Ronald Micura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8455321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biology, 2017, 18, 1.	8.8	587
2	Structural Basis for Discriminative Regulation of Gene Expression by Adenine- and Guanine-Sensing mRNAs. Chemistry and Biology, 2004, 11, 1729-1741.	6.0	505
3	Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetra nucleotide-2′,3′-cyclophosphates (with a commentary concerning the origin of biomolecular) Tj ETQq1 1	0.784014	rgB ⊉ 7∕Ωverlo
4	Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nature Structural and Molecular Biology, 2010, 17, 781-787.	8.2	229
5	Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation. Nature Structural and Molecular Biology, 2005, 12, 218-224.	8.2	183
6	Ligand-Induced Folding of the Adenosine Deaminase A-Riboswitch and Implications on Riboswitch Translational Control. ChemBioChem, 2007, 8, 896-902.	2.6	167
7	The Dynamic Nature of RNA as Key to Understanding Riboswitch Mechanisms. Accounts of Chemical Research, 2011, 44, 1339-1348.	15.6	165
8	Conformational capture of the SAM-II riboswitch. Nature Chemical Biology, 2011, 7, 393-400.	8.0	158
9	Escherichia coli Ribosomal Protein S1 Unfolds Structured mRNAs Onto the Ribosome for Active Translation Initiation. PLoS Biology, 2013, 11, e1001731.	5.6	151
10	Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach. Nucleic Acids Research, 2007, 35, 5370-5378.	14.5	146
11	Long non-coding RNAs as targets for cytosine methylation. RNA Biology, 2013, 10, 1002-1008.	3.1	138
12	Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chemical Society Reviews, 2020, 49, 7331-7353.	38.1	130
13	Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4188-4193.	7.1	115
14	Nascent Peptide in the Ribosome Exit Tunnel Affects Functional Properties of the A-Site of the Peptidyl Transferase Center. Molecular Cell, 2011, 41, 321-330.	9.7	114
15	Folding of a transcriptionally acting PreQ ₁ riboswitch. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10804-10809.	7.1	111
16	Small Interfering RNAs and Their Chemical Synthesis. Angewandte Chemie - International Edition, 2002, 41, 2265.	13.8	103
17	Syntheses of RNAs with up to 100 Nucleotides Containing Site-Specific 2â€~-Methylseleno Labels for Use in X-ray Crystallography. Journal of the American Chemical Society, 2005, 127, 12035-12045.	13.7	98
18	2′-Azido RNA, a Versatile Tool for Chemical Biology: Synthesis, X-ray Structure, siRNA Applications, Click Labeling. ACS Chemical Biology, 2012, 7, 581-589.	3.4	98

#	Article	IF	CITATIONS
19	Chemical Synthesis of Selenium-Modified Oligoribonucleotides and Their Enzymatic Ligation Leading to an U6 SnRNA Stemâ ``Loop Segment. Journal of the American Chemical Society, 2004, 126, 1141-1149.	13.7	96
20	The Role of 23S Ribosomal RNA Residue A2451 in Peptide Bond Synthesis Revealed by AtomicÂMutagenesis. Chemistry and Biology, 2008, 15, 485-492.	6.0	88
21	In-line alignment and Mg2+ coordination at the cleavage site of the env22 twister ribozyme. Nature Communications, 2014, 5, 5534.	12.8	84
22	Efficient Ribosomal Peptidyl Transfer Critically Relies on the Presence of the Ribose 2â€~-OH at A2451 of 23S rRNA. Journal of the American Chemical Society, 2006, 128, 4453-4459.	13.7	83
23	Methylation of the nucleobases in RNA oligonucleotides mediates duplex–hairpin conversion. Nucleic Acids Research, 2001, 29, 3997-4005.	14.5	81
24	The preparation of site-specifically modified riboswitch domains as an example for enzymatic ligation of chemically synthesized RNA fragments. Nature Protocols, 2008, 3, 1457-1466.	12.0	81
25	5-Fluoro pyrimidines: labels to probe DNA and RNA secondary structures by 1D 19 F NMR spectroscopy. Nucleic Acids Research, 2009, 37, 7728-7740.	14.5	79
26	Pistol ribozyme adopts a pseudoknot fold facilitating site-specific in-line cleavage. Nature Chemical Biology, 2016, 12, 702-708.	8.0	78
27	Chemical engineering of the peptidyl transferase center reveals an important role of the 2'-hydroxyl group of A2451. Nucleic Acids Research, 2005, 33, 1618-1627.	14.5	75
28	2′-Methylseleno-modified oligoribonucleotides for X-ray crystallography synthesized by the ACE RNA solid-phase approach. Nucleic Acids Research, 2008, 36, 970-983.	14.5	75
29	Ribose 2â€ ⁻ -FLabeling: A Simple Tool for the Characterization of RNA Secondary Structure Equilibria by19F NMR Spectroscopy. Journal of the American Chemical Society, 2005, 127, 11558-11559.	13.7	74
30	Bistable Secondary Structures of Small RNAs and Their Structural Probing by Comparative Imino Proton NMR Spectroscopy. Journal of Molecular Biology, 2003, 325, 421-431.	4.2	73
31	Molecular insights into protein synthesis with proline residues. EMBO Reports, 2016, 17, 1776-1784.	4.5	73
32	Osmiumâ€Mediated Transformation of 4â€Thiouridine to Cytidine as Key To Study RNA Dynamics by Sequencing. Angewandte Chemie - International Edition, 2017, 56, 13479-13483.	13.8	73
33	Stem cells are differentially regulated during development, regeneration and homeostasis in flatworms. Developmental Biology, 2009, 334, 198-212.	2.0	72
34	¹⁹ F NMR Spectroscopy for the Analysis of RNA Secondary Structure Populations. Journal of the American Chemical Society, 2008, 130, 17230-17231.	13.7	70
35	A General Approach for the Identification of Site-Specific RNA Binders by19F NMR Spectroscopy: Proof of Concept. Angewandte Chemie - International Edition, 2006, 45, 3450-3453.	13.8	69
36	Synthesis, Oxidation Behavior, Crystallization and Structure of 2â€~-Methylseleno Guanosine Containing RNAs. Journal of the American Chemical Society, 2006, 128, 9909-9918.	13.7	68

#	Article	IF	CITATIONS
37	Conformation of sister chromatids in the replicated human genome. Nature, 2020, 586, 139-144.	27.8	68
38	Pyranosyl-RNA: Further Observations on Replication. Helvetica Chimica Acta, 1997, 80, 1901-1951.	1.6	67
39	Tuning a riboswitch response through structural extension of a pseudoknot. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3256-64.	7.1	67
40	Chemical Synthesis of Siteâ€Specifically 2′â€Azidoâ€Modified RNA and Potential Applications for Bioconjugation and RNA Interference. ChemBioChem, 2011, 12, 47-51.	2.6	66
41	2′â€&CF ₃ Uridine—A Powerful Label for Probing Structure and Function of RNA by ¹⁹ Fâ€NMR Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 13080-13084.	13.8	60
42	Thermodynamics of HIV-1 Reverse Transcriptase in Action Elucidates the Mechanism of Action of Non-Nucleoside Inhibitors. Journal of the American Chemical Society, 2013, 135, 9743-9752.	13.7	57
43	On Secondary Structure Rearrangements and Equilibria of Small RNAs. ChemBioChem, 2003, 4, 984-990.	2.6	56
44	A Powerful Approach for the Selection of 2-Aminopurine Substitution Sites to Investigate RNA Folding. Journal of the American Chemical Society, 2011, 133, 16161-16167.	13.7	56
45	Pseudoknot Preorganization of the PreQ ₁ Class I Riboswitch. Journal of the American Chemical Society, 2012, 134, 11928-11931.	13.7	56
46	Structure-based mechanistic insights into catalysis by small self-cleaving ribozymes. Current Opinion in Chemical Biology, 2017, 41, 71-83.	6.1	56
47	An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination. Nucleic Acids Research, 2007, 35, 5130-5140.	14.5	55
48	Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation. Nature Chemical Biology, 2010, 6, 344-351.	8.0	54
49	Crystal Structure of Hypusine-Containing Translation Factor eIF5A Bound to a Rotated Eukaryotic Ribosome. Journal of Molecular Biology, 2016, 428, 3570-3576.	4.2	53
50	A Miniâ€Twister Variant and Impact of Residues/Cations on the Phosphodiester Cleavage of this Ribozyme Class. Angewandte Chemie - International Edition, 2015, 54, 15128-15133.	13.8	51
51	Pentopyranosyl Oligonucleotide Systems. 9th Communication. Helvetica Chimica Acta, 2003, 86, 4270-4363.	1.6	50
52	The Synthesis of 2?- O -[(Triisopropylsilyl)oxy] methyl (TOM) Phosphoramidites of Methylated Ribonucleosides (m 1 G , m 2 G , m 2 2 G , m 1 I , m 3 U , m 4 C , m 6 A , m 6 2 A) for Use in Automated RNA Solid-Phase Synthesis. Monatshefte Für Chemie, 2003, 134, 851-873.	1.8	48
53	Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme. Nucleic Acids Research, 2007, 35, 6424-6438.	14.5	48
54	A fast selenium derivatization strategy for crystallization and phasing of RNA structures. Rna, 2009, 15, 707-715.	3.5	47

#	Article	IF	CITATIONS
55	Efficient Access to 3′-Terminal Azide-Modified RNA for Inverse Click-Labeling Patterns. Bioconjugate Chemistry, 2014, 25, 188-195.	3.6	47
56	Machine learning of reverse transcription signatures of variegated polymerases allows mapping and discrimination of methylated purines in limited transcriptomes. Nucleic Acids Research, 2020, 48, 3734-3746.	14.5	45
57	The "Speedy―Synthesis of Atomâ€Specific ¹⁵ N Imino/Amidoâ€Labeled RNA. Chemistry - A European Journal, 2015, 21, 11634-11643.	3.3	44
58	Cyclic Oligoribonucleotides (RNA) by Solid-Phase Synthesis. Chemistry - A European Journal, 1999, 5, 2077-2082.	3.3	43
59	Triggering of RNA Secondary Structures by a Functionalized Nucleobase. Angewandte Chemie - International Edition, 2004, 43, 3922-3925.	13.8	42
60	Binding of Aminoglycoside Antibiotics to the Duplex Form of the HIVâ€1 Genomic RNA Dimerization Initiation Site. Angewandte Chemie - International Edition, 2008, 47, 4110-4113.	13.8	40
61	Evidence for Pseudoknot Formation of Class I preQ ₁ Riboswitch Aptamers. ChemBioChem, 2009, 10, 1141-1144.	2.6	39
62	Nonâ€Hydrolyzable RNA–Peptide Conjugates: A Powerful Advance in the Synthesis of Mimics for 3′â€Peptidyl tRNA Termini. Angewandte Chemie - International Edition, 2009, 48, 4056-4060.	13.8	38
63	Label-free, direct localization and relative quantitation of the RNA nucleobase methylations m6A, m5C, m3U, and m5U by top-down mass spectrometry. Nucleic Acids Research, 2017, 45, 8014-8025.	14.5	38
64	Unwinding the twister ribozyme: from structure to mechanism. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1402.	6.4	38
65	Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol. Nature Structural and Molecular Biology, 2022, 29, 152-161.	8.2	38
66	Effects of <i>N²,N²</i> -dimethylguanosine on RNA structure and stability: Crystal structure of an RNA duplex with tandem m ² ₂ C:A pairs. Rna, 2008, 14, 2125-2135.	3.5	37
67	Efficient Access to Nonhydrolyzable Initiator tRNA Based on the Synthesis of 3′â€Azidoâ€3′â€Deoxyadenos RNA. Angewandte Chemie - International Edition, 2010, 49, 7470-7472.	sine 13.8	36
68	Mechanistic insights into the slow peptide bond formation with D-amino acids in the ribosomal active site. Nucleic Acids Research, 2019, 47, 2089-2100.	14.5	36
69	RNA Two-State Conformation Equilibria and the Effect of Nucleobase Methylation. Angewandte Chemie - International Edition, 2002, 41, 605-609.	13.8	33
70	Binding of Macrolide Antibiotics Leads to Ribosomal Selection against Specific Substrates Based on Their Charge and Size. Cell Reports, 2016, 16, 1789-1799.	6.4	33
71	Pseudoknot Formation Seeds the Twister Ribozyme Cleavage Reaction Coordinate. Journal of the American Chemical Society, 2017, 139, 8186-8193.	13.7	33
72	Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions. Nature Communications, 2018, 9, 4865.	12.8	33

#	Article	IF	CITATIONS
73	Opposite Orientation of Backbone Inclination in Pyranosyl-RNA and Homo-DNA Correlates with Opposite Directionality of Duplex Properties. Angewandte Chemie - International Edition, 1999, 38, 680-683.	13.8	32
74	Surprising Base Pairing and Structural Properties of 2′-Trifluoromethylthio-Modified Ribonucleic Acids. Journal of the American Chemical Society, 2014, 136, 6656-6663.	13.7	32
75	Structure-based insights into self-cleavage by a four-way junctional twister-sister ribozyme. Nature Communications, 2017, 8, 1180.	12.8	30
76	Atom‣pecific Mutagenesis Reveals Structural and Catalytic Roles for an Active‣ite Adenosine and Hydrated Mg ²⁺ in Pistol Ribozymes. Angewandte Chemie - International Edition, 2017, 56, 15954-15958.	13.8	29
77	Ligandâ€Detected Relaxation Dispersion NMR Spectroscopy: Dynamics of preQ ₁ –RNA Binding. Angewandte Chemie - International Edition, 2015, 54, 560-563.	13.8	28
78	Role of a ribosomal RNA phosphate oxygen during the EF-G–triggered GTP hydrolysis. Proceedings of the United States of America, 2015, 112, E2561-8.	7.1	28
79	Hatchet ribozyme structure and implications for cleavage mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10783-10791.	7.1	28
80	SAM-VI riboswitch structure and signature for ligand discrimination. Nature Communications, 2019, 10, 5728.	12.8	28
81	Reliable semi-synthesis of hydrolysis-resistant 3′-peptidyl-tRNA conjugates containing genuine tRNA modifications. Nucleic Acids Research, 2010, 38, 6796-6802.	14.5	27
82	Native Chemical Ligation of Hydrolysis-Resistant 3′-Peptidyl–tRNA Mimics. Journal of the American Chemical Society, 2011, 133, 19068-19071.	13.7	27
83	Pyranosyl-RNA Also Forms Hairpin Structures. Angewandte Chemie International Edition in English, 1997, 36, 870-873.	4.4	26
84	Thioguanosine Conversion Enables mRNAâ€Lifetime Evaluation by RNA Sequencing Using Double Metabolic Labeling (TUCâ€seq DUAL). Angewandte Chemie - International Edition, 2020, 59, 6881-6886.	13.8	26
85	Crucial Roles of Two Hydrated Mg 2+ Ions in Reaction Catalysis of the Pistol Ribozyme. Angewandte Chemie - International Edition, 2020, 59, 2837-2843.	13.8	24
86	A natural riboswitch scaffold with self-methylation activity. Nature Communications, 2021, 12, 3877.	12.8	24
87	On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent. Nucleic Acids Research, 2015, 43, 5171-5181.	14.5	23
88	Structural insights into synthetic ligands targeting A–A pairs in disease-related CAG RNA repeats. Nucleic Acids Research, 2019, 47, 10906-10913.	14.5	23
89	Structural distinctions between NAD+ riboswitch domains 1 and 2 determine differential folding and ligand binding. Nucleic Acids Research, 2020, 48, 12394-12406.	14.5	22
90	Conformational Rearrangements of Individual Nucleotides during RNA-Ligand Binding Are Rate-Differentiated. Journal of the American Chemical Society, 2016, 138, 3627-3630.	13.7	20

#	Article	IF	CITATIONS
91	Conformational and chemical selection by a <i>trans</i> -acting editing domain. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6774-E6783.	7.1	19
92	Thiouridine-to-Cytidine Conversion Sequencing (TUC-Seq) to Measure mRNA Transcription and Degradation Rates. Methods in Molecular Biology, 2020, 2062, 191-211.	0.9	19
93	2′- <i>O</i> -Trifluoromethylated RNA – a powerful modification for RNA chemistry and NMR spectroscopy. Chemical Science, 2020, 11, 11322-11330.	7.4	18
94	Functionalized polystyrene supports for solid-phase synthesis of glycyl-, alanyl-, and isoleucyl-RNA conjugates as hydrolysis-resistant mimics of peptidyl-tRNAs. Bioorganic and Medicinal Chemistry, 2011, 19, 5167-5174.	3.0	17
95	Enzymatic Ligation Strategies for the Preparation of Purine Riboswitches with Site-Specific Chemical Modifications. Methods in Molecular Biology, 2009, 540, 15-24.	0.9	17
96	Efficient Access to Nonhydrolyzable Initiator tRNA Based on the Synthesis of 3′â€Azidoâ€3′â€Deoxyadenos RNA. Angewandte Chemie, 2010, 122, 7632-7634.	ine 2.0	16
97	Enzymatic synthesis of $2\hat{a} \in 2$ -methylseleno-modified RNA. Chemical Science, 2011, 2, 2224.	7.4	16
98	The effect of adenine protonation on RNA phosphodiester backbone bond cleavage elucidated by deaza-nucleobase modifications and mass spectrometry. Nucleic Acids Research, 2019, 47, 7223-7234.	14.5	16
99	The Synthesis of Methylated, Phosphorylated, and Phosphonated 3′â€Aminoacylâ€ŧRNA ^{Sec} Mimics. Chemistry - A European Journal, 2013, 19, 15872-15878.	3.3	15
100	Insights into xanthine riboswitch structure and metal ion-mediated ligand recognition. Nucleic Acids Research, 2021, 49, 7139-7153.	14.5	15
101	Long-wavelength absorbing derivatives of phycocyanobilin: New structural aspects of phytochrome. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 2517-2522.	2.2	12
102	Chemically Engineered Ribosomes: A New Frontier in Synthetic Biology. Current Organic Chemistry, 2010, 14, 148-161.	1.6	12
103	Selective Desulfurization Significantly Expands Sequence Variety of 3′â€Peptidyl–tRNA Mimics Obtained by Native Chemical Ligation. ChemBioChem, 2012, 13, 1742-1745.	2.6	12
104	Expanding the Scope of 2′‣CF ₃ Modified RNA. Chemistry - A European Journal, 2015, 21, 10400-10407.	3.3	12
105	Amineâ€ŧoâ€Azide Conversion on Native RNA via Metalâ€Free Diazotransfer Opens New Avenues for RNA Manipulations. Angewandte Chemie - International Edition, 2021, 60, 6970-6974.	13.8	12
106	SHAPE probing pictures Mg2+-dependent folding of small self-cleaving ribozymes. Nucleic Acids Research, 2018, 46, 6983-6995.	14.5	12
107	Facile synthesis of a 3-deazaadenosine phosphoramidite for RNA solid-phase synthesis. Beilstein Journal of Organic Chemistry, 2016, 12, 2556-2562.	2.2	11
108	The synthesis of 15N(7)-Hoogsteen face-labeled adenosine phosphoramidite for solid-phase RNA synthesis. Monatshefte Für Chemie, 2017, 148, 149-155.	1.8	11

#	Article	IF	CITATIONS
109	Superior cellular activities of azido- over amino-functionalized ligands for engineered preQ ₁ riboswitches in <i>E.coli</i> . RNA Biology, 2018, 15, 1376-1383.	3.1	11
110	Impact of 3-deazapurine nucleobases on RNA properties. Nucleic Acids Research, 2021, 49, 4281-4293.	14.5	11
111	Bridged Cyclic Oligoribonucleotides as Model Compounds for Codon - Anticodon Pairing. Angewandte Chemie - International Edition, 2000, 39, 922-925.	13.8	10
112	A personal perspective on chemistry-driven RNA research. Biopolymers, 2013, 99, n/a-n/a.	2.4	10
113	Dye label interference with RNA modification reveals 5-fluorouridine as non-covalent inhibitor. Nucleic Acids Research, 2014, 42, 12735-12745.	14.5	10
114	The synthesis of 2′-methylseleno adenosine and guanosine 5′-triphosphates. Bioorganic and Medicinal Chemistry, 2012, 20, 2416-2418.	3.0	9
115	Access to 3-Deazaguanosine Building Blocks for RNA Solid-Phase Synthesis Involving Hartwig–Buchwald C–N Cross-Coupling. Organic Letters, 2019, 21, 3900-3903.	4.6	9
116	Practical Synthesis of Capâ€4 RNA. ChemBioChem, 2020, 21, 265-271.	2.6	9
117	A Phycocyanobilin Seryliminoester as a New Model for the Chromophore–Protein Interaction in Phytochrome. Angewandte Chemie International Edition in English, 1995, 34, 1733-1735.	4.4	8
118	Programmable Ligand-Controlled Riboregulators. Angewandte Chemie - International Edition, 2006, 45, 30-31.	13.8	8
119	New Insights into Gene Regulation—Highâ€Resolution Structures of Cobalamin Riboswitches. Angewandte Chemie - International Edition, 2013, 52, 1874-1877.	13.8	8
120	Synthesis of 5-Hydroxymethylcytidine- and 5-HydroxymethylÂʉridine-Modified RNA. Synthesis, 2016, 48, 1108-1116.	2.3	8
121	An Unconventional Acid‣abile Nucleobase Protection Concept for Guanosine Phosphoramidites in RNA Solidâ€Phase Synthesis. Chemistry - A European Journal, 2017, 23, 3406-3413.	3.3	8
122	Synthesis, Thermodynamic Properties, and Crystal Structure of RNA Oligonucleotides Containing 5-Hydroxymethylcytosine. Journal of Organic Chemistry, 2017, 82, 7939-7945.	3.2	8
123	Sister chromatid–sensitive Hi-C to map the conformation of replicated genomes. Nature Protocols, 2022, 17, 1486-1517.	12.0	8
124	Chemical synthesis of RNA with site-specific methylphosphonate modifications. Methods, 2016, 107, 79-88.	3.8	7
125	Osmiumâ€Mediated Transformation of 4â€Thiouridine to Cytidine as Key To Study RNA Dynamics by Sequencing. Angewandte Chemie, 2017, 129, 13664-13668.	2.0	7
126	Crucial Roles of Two Hydrated Mg 2+ Ions in Reaction Catalysis of the Pistol Ribozyme. Angewandte Chemie, 2020, 132, 2859-2865.	2.0	7

#	Article	IF	CITATIONS
127	1-Deazaguanosine-Modified RNA: The Missing Piece for Functional RNA Atomic Mutagenesis. Journal of the American Chemical Society, 2022, 144, 10344-10352.	13.7	7
128	Towards a comprehensive understanding of RNA deamination: synthesis and properties of xanthosine-modified RNA. Nucleic Acids Research, 2022, 50, 6038-6051.	14.5	7
129	Syntheses of ¹⁵ N-labeled pre-queuosine nucleobase derivatives. Beilstein Journal of Organic Chemistry, 2014, 10, 1914-1918.	2.2	6
130	Use of SHAPE to Select 2AP Substitution Sites for RNA–Ligand Interactions and Dynamics Studies. Methods in Molecular Biology, 2014, 1103, 227-239.	0.9	6
131	Preparation of 2′â€Deoxyâ€2′â€Methylselenoâ€Modified Phosphoramidites and RNA. Current Protocols in Nucleic Acid Chemistry, 2006, 27, Unit 1.15.	0.5	5
132	Synthesis of aminoacylated N6,N6-dimethyladenosine solid support for efficient access to hydrolysis-resistant 3′-charged tRNA mimics. Bioorganic and Medicinal Chemistry, 2014, 22, 6989-6995.	3.0	5
133	Deoxyribozyme-Based, Semisynthetic Access to Stable Peptidyl-tRNAs Exemplified by tRNAVal Carrying a Macrolide Antibiotic Resistance Peptide. Methods in Molecular Biology, 2012, 848, 201-213.	0.9	4
134	Native Chemical Ligation of Hydrolysisâ€Resistant 3′â€NH ysteineâ€Modified RNA. Current Protocols in Nucleic Acid Chemistry, 2015, 62, 4.64.1-4.64.36.	0.5	4
135	Atom‧pecific Mutagenesis Reveals Structural and Catalytic Roles for an Active‧ite Adenosine and Hydrated Mg ²⁺ in Pistol Ribozymes. Angewandte Chemie, 2017, 129, 16170-16174.	2.0	4
136	Efficient access to N-trifluoroacetylated 2′-amino-2′-deoxyadenosine phosphoramidite for RNA solid-phase synthesis. Monatshefte Für Chemie, 2019, 150, 795-800.	1.8	4
137	Synthesis of <i>O</i> ⁶ -alkylated preQ ₁ derivatives. Beilstein Journal of Organic Chemistry, 2021, 17, 2295-2301.	2.2	4
138	Synthesis of 4-thiouridines with prodrug functionalization for RNA metabolic labeling. RSC Chemical Biology, 2022, 3, 447-455.	4.1	4
139	On RNA Triplet Interactions: NMR Study of the Short Intramolecular Duplex Formed by r[GCAm1G-p-O(CH2CH2O)6-p-UGCC], Preliminary Communication. Helvetica Chimica Acta, 2000, 83, 2336-2343.	1.6	3
140	Genetic Control by a Natural Metabolite-Responsive Ribozyme. Angewandte Chemie - International Edition, 2004, 43, 4692-4.	13.8	3
141	Thioguanosine Conversion Enables mRNA‣ifetime Evaluation by RNA Sequencing Using Double Metabolic Labeling (TUCâ€seq DUAL). Angewandte Chemie, 2020, 132, 6948-6953.	2.0	3
142	Synthesis of N4-acetylated 3-methylcytidine phosphoramidites for RNA solid-phase synthesis. Monatshefte Für Chemie, 2022, 153, 285-291.	1.8	3
143	Chasing after Antibiotic Leads. Chemistry and Biology, 2009, 16, 1024-1025.	6.0	2
144	On Secondary Structure Rearrangements and Equilibria of Small RNAs. ChemBioChem, 2003, 4, 1263-1263.	2.6	1

#	Article	IF	CITATIONS
145	Automated Chemical Solid-Phase Synthesis and Deprotection of 5-Hydroxymethylcytosine-Containing RNA. Methods in Molecular Biology, 2017, 1562, 295-302.	0.9	1
146	Practical synthesis of N-(di-n-butylamino)methylene-protected 2-aminopurine riboside phosphoramidite for RNA solid-phase synthesis. Monatshefte Für Chemie, 2019, 150, 1941-1946.	1.8	1
147	Design of cross-linked RNA/protein complexes for structural studies. Biochimie, 2019, 164, 95-98.	2.6	1
148	Secondary Structure Rearrangements and Equilibria of Small RNAs. ChemInform, 2003, 34, no.	0.0	0
149	RNA – Struktur und Funktion. Nachrichten Aus Der Chemie, 2007, 55, 279-284.	0.0	0
150	Biochemie 2010. Nachrichten Aus Der Chemie, 2011, 59, 297-318.	0.0	0
151	Amineâ€ŧoâ€Azide Conversion on Native RNA via Metalâ€Free Diazotransfer Opens New Avenues for RNA Manipulations. Angewandte Chemie, 2021, 133, 7046-7050.	2.0	0