
Chao-Yuan Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8452737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Double-Pulse Generation of Indistinguishable Single Photons with Optically Controlled Polarization. Nano Letters, 2022, 22, 1483-1490.	9.1	14
2	The role of different types of dopants in 1.3 μm InAs/GaAs quantum-dot lasers. Journal Physics D: Applied Physics, 2022, 55, 215105.	2.8	6
3	Mode selection in InGaAs/InGaAsP quantum well photonic crystal lasers based on coupled double-heterostructure cavities. Optics Express, 2022, 30, 10229.	3.4	2
4	Optical Frequency Comb Generation via Cascaded Intensity and Phase Photonic Crystal Modulators. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-9.	2.9	3
5	Directional charge transportation and Rayleigh scattering for the optimal in-band quantum yield of a composite semiconductor nano-photocatalyst. Catalysis Science and Technology, 2021, 11, 3855-3864.	4.1	1
6	Observation of photon antibunching with only one standard single-photon detector. Review of Scientific Instruments, 2021, 92, 013105.	1.3	1
7	Mode Selection in L40 Photonic Crystal Cavities via Spatially Distributed Pumping. , 2021, , .		Ο
8	Nanolasers with Feedback as Low-Coherence Illumination Sources for Speckle-Free Imaging: A Numerical Analysis of the Superthermal Emission Regime. Nanomaterials, 2021, 11, 3325.	4.1	7
9	Photonic integration of uniform GaAs nanowires in hexagonal and honeycomb lattice for broadband optical absorption. AIP Advances, 2020, 10, .	1.3	2
10	Control of quality factor in laterally coupled vertical cavities. IET Optoelectronics, 2020, 14, 100-103.	3.3	1
11	Precise Arrays of Epitaxial Quantum Dots Nucleated by In Situ Laser Interference for Quantum Information Technology Applications. ACS Applied Nano Materials, 2020, 3, 4739-4746.	5.0	17
12	Formation of laterally ordered quantum dot molecules by <i>in situ</i> nanosecond laser interference. Applied Physics Letters, 2020, 116, .	3.3	6
13	Broadband, wide-angle antireflection in GaAs through surface nano-structuring for solar cell applications. Scientific Reports, 2020, 10, 6269.	3.3	15
14	Directed self-assembly of InAs quantum dots using in situ interference lithography. , 2020, , .		1
15	Direct patterning of periodic semiconductor nanostructures using single-pulse nanosecond laser interference. Optics Express, 2020, 28, 32529.	3.4	9
16	Theoretical modelling of single-mode lasing in microcavity lasers via optical interference injection. Optics Express, 2020, 28, 16486.	3.4	4
17	Generation of optical frequency combs using a photonic crystal cavity. IET Optoelectronics, 2019, 13, 23-26.	3.3	2
18	Thermodynamic processes on a semiconductor surface during inâ€situ multiâ€beam laser interference patterning. IET Optoelectronics, 2019, 13, 7-11.	3.3	5

Chao-Yuan Jin

#	Article	IF	CITATIONS
19	Photonic Crystal Cavity-Based Intensity Modulation for Integrated Optical Frequency Comb Generation. Crystals, 2019, 9, 493.	2.2	3
20	Thermal Characteristics of Brillouin Microsphere Lasers. IEEE Journal of Quantum Electronics, 2018, 54, 1-8.	1.9	5
21	Modulating Photonic Crystal Structures to Generate Optical Frequency Combs. , 2018, , .		0
22	Quality Factor Control in Laterally-Coupled Vertical Cavities. , 2018, , .		0
23	Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-10.	2.9	28
24	A parity-time symmetryÂsingle-mode laser based on graphene. Journal of Modern Optics, 2017, 64, 2133-2140.	1.3	0
25	Hybrid single-mode laser based on graphene Bragg gratings on silicon. Optics Letters, 2017, 42, 2134.	3.3	4
26	Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system. Physical Review A, 2015, 91, .	2.5	16
27	Ultrafast non-local control of spontaneous emission. Nature Nanotechnology, 2014, 9, 886-890.	31.5	59
28	Photonic switching devices based on semiconductor nano-structures. Journal Physics D: Applied Physics, 2014, 47, 133001.	2.8	32
29	Coupling of InAs/InP quantum dots to the plasmon resonance of In nanoparticles grown by metal-organic vapor phase epitaxy. Applied Physics Letters, 2013, 102, 191111.	3.3	7
30	Quantum Dot Switches: Towards Nanoscale Power-Efficient All-Optical Signal Processing. , 2012, , 197-221.		1
31	Controlling polarization anisotropy of site-controlled InAs/InP (100) quantum dots. Applied Physics Letters, 2011, 98, 201904.	3.3	16
32	Observation of phase shifts in a vertical cavity quantum dot switch. Applied Physics Letters, 2011, 98, 231101.	3.3	20
33	Detailed Design and Characterization of All-Optical Switches Based on InAs/GaAs Quantum Dots in a Vertical Cavity. IEEE Journal of Quantum Electronics, 2010, 46, 1582-1589.	1.9	14
34	Temperature-dependent carrier tunneling for self-assembled InAs/GaAs quantum dots with a GaAsN quantum well injector. Applied Physics Letters, 2010, 96, 151104.	3.3	22
35	Low-Threshold 1.3-\$mu\$m GaInNAs Quantum-Well Lasers Using Quaternary-Barrier Structures. IEEE Photonics Technology Letters, 2008, 20, 942-944.	2.5	2
36	Simple theoretical model for the temperature stability of InAs/GaAs self-assembled quantum dot lasers with different p-type modulation doping levels. Applied Physics Letters, 2008, 93, 161103.	3.3	9

Chao-Yuan Jin

#	Article	IF	CITATIONS
37	1.55 μ m InAs quantum dots grown on a GaAs substrate using a GaAsSb metamorphic buffer layer. Applied Physics Letters, 2008, 92, .	3.3	39
38	Reduced temperature sensitivity of lasing wavelength in near-1.3â€[micro sign]m InAs/GaAs quantum-dot laser with stepped composition strain-reducing layer. Electronics Letters, 2007, 43, 670.	1.0	5
39	Observation and Modeling of a Room-Temperature Negative Characteristic Temperature 1.3-\$mu\$m p-Type Modulation-Doped Quantum-Dot Laser. IEEE Journal of Quantum Electronics, 2006, 42, 1259-1265.	1.9	43
40	1.3â€[micro sign]m InAs/GaAs quantum-dot laser with low-threshold current density and negative characteristic temperature above room temperature. Electronics Letters, 2006, 42, 922.	1.0	35
41	Effects of growth temperature on the structural and optical properties of 1.6μm GalnNAsâ^GaAs multiple quantum wells. Applied Physics Letters, 2006, 88, 191907.	3.3	15
42	Numerical and theoretical analysis of the crosstalk in linear optical amplifiers. IEEE Journal of Quantum Electronics, 2005, 41, 636-641.	1.9	10
43	Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field. IEEE Journal of Quantum	1.9	20