Natascha Riedinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/845067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geochemical Evaluation of Organic Matter Enrichment in the "Mississippian Limestone―Interval of the Anadarko Shelf of Oklahoma. Marine and Petroleum Geology, 2022, 135, 105422.	3.3	3
2	Reconstructing the paleoceanographic and redox conditions responsible for variations in uranium content in North American Devonian black shales. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 587, 110763.	2.3	5
3	Editorial: Geochemical Signals in Dynamic Sedimentary Systems Along Continental Margins. Frontiers in Earth Science, 2022, 10, .	1.8	0
4	Holocene Spatiotemporal Redox Variations in the Southern Baltic Sea. Frontiers in Earth Science, 2021, 9, .	1.8	2
5	Benthic iron flux influenced by climateâ€sensitive interplay between organic carbon availability and sedimentation rate in Arctic fjords. Limnology and Oceanography, 2021, 66, 3374-3392.	3.1	11
6	Persistent deep water anoxia in the eastern South Atlantic during the last ice age. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
7	Assessing the application of trace metals as paleoproxies and a chemostratigraphic tool in carbonate systems: A case study from the "Mississippian Limestone―of the midcontinent, United States. Marine and Petroleum Geology, 2020, 112, 104061.	3.3	9
8	Uranium isotopes as a proxy for primary depositional redox conditions in organic-rich marine systems. Earth and Planetary Science Letters, 2020, 529, 115878.	4.4	39
9	Glacial controls on redox-sensitive trace element cycling in Arctic fjord sediments (Spitsbergen,) Tj ETQq1 10.78	4314 rgBT	-/Qyerlock 1(
10	Geochemical signatures of redepositional environments: The Namibian continental margin. Marine Geology, 2020, 429, 106316.	2.1	7
11	Sedimentary vanadium isotope signatures in low oxygen marine conditions. Geochimica Et Cosmochimica Acta, 2020, 284, 134-155.	3.9	26
12	Redox conditions on the Anadarko Shelf of Oklahoma during the deposition of the "Mississippian Limestone― Marine and Petroleum Geology, 2020, 116, 104345.	3.3	5
13	SPATIAL AND TEMPORAL DYNAMICS OF EARLY DIAGENETIC PROCESSES IN GLACIALLY INFLUENCED ARCTIC FJORDS. , 2020, , .		0
14	URANIUM ISOTOPES AS A PROXY FOR PRIMARY DEPOSITIONAL REDOX CONDITIONS IN REDEPOSITED SEDIMENTS OF THE NAMIBIAN CONTINENTAL MARGIN. , 2020, , .		0
15	IMPACT OF PHYSICAL PROPERTIES ON BIOGEOCHEMICAL TRACE METAL CYCLING IN MODERN MARINE SURFACE SEDIMENTS OF THE ARGENTINE BASIN. , 2020, , .		0
16	Interplay of Subduction Tectonics, Sedimentation, and Carbon Cycling. Geochemistry, Geophysics, Geosystems, 2019, 20, 4939-4955.	2.5	7
17	Clobal diffusive fluxes of methane in marine sediments. Nature Geoscience, 2018, 11, 421-425.	12.9	192
18	An evaluation of sedimentary molybdenum and iron as proxies for pore fluid paleoredox conditions. Numerische Mathematik, 2018, 318, 527-556.	1.4	63

NATASCHA RIEDINGER

#	Article	IF	CITATIONS
19	Phosphorus dynamics around the sulphate-methane transition in continental margin sediments: Authigenic apatite and Fe(II) phosphates. Marine Geology, 2018, 404, 84-96.	2.1	45
20	Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochimica Et Cosmochimica Acta, 2017, 207, 256-276.	3.9	95
21	Rock magnetic and geochemical evidence for authigenic magnetite formation via iron reduction in coalâ€bearing sediments offshore <scp>S</scp> himokita <scp>P</scp> eninsula, <scp>J</scp> apan (IODP) Tj ET	Qq151 0.7	843214 rgBi
22	Iron-controlled oxidative sulfur cycling recorded in the distribution and isotopic composition of sulfur species in glacially influenced fjord sediments of west Svalbard. Chemical Geology, 2017, 466, 678-695.	3.3	33
23	Sulfur Cycling in an Iron Oxide-Dominated, Dynamic Marine Depositional System: The Argentine Continental Margin. Frontiers in Earth Science, 2017, 5, .	1.8	70
24	The Sedimentary Deep Subseafloor Biosphere. , 2016, , 258-274.		3
25	Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan. Frontiers in Microbiology, 2016, 7, 1576.	3.5	35
26	Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Scientific Reports, 2016, 6, 38541.	3.3	137
27	A Holocene history of dynamic water column redox conditions in the Landsort Deep, Baltic Sea. Numerische Mathematik, 2016, 316, 713-745.	1.4	51
28	Deep subsurface carbon cycling in the <scp>N</scp> ankai <scp>T</scp> rough (Japan)—Evidence of tectonically induced stimulation of a deep microbial biosphere. Geochemistry, Geophysics, Geosystems, 2015, 16, 3257-3270.	2.5	9
29	Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science, 2015, 349, 420-424.	12.6	376
30	Iron and manganese speciation and cycling in glacially influenced high-latitude fjord sediments (West) Tj ETQq0 Cosmochimica Acta, 2014, 141, 628-655.	0 0 rgBT /(3.9	Overlock 10 88
31	An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology, 2014, 12, 172-181.	2.4	180
32	Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.). Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414, 146-154.	2.3	38
33	Evaluating nitrogen isotopes as proxies for depositional environmental conditions in shales: Comparing Caney and Woodford Shales in the Arkoma Basin, Oklahoma. Chemical Geology, 2013, 360-361, 231-240.	3.3	35
34	Characterization of Metabolically Active Bacterial Populations in Subseafloor Nankai Trough Sediments above, within, and below the Sulfate–Methane Transition Zone. Frontiers in Microbiology, 2012, 3, 113.	3.5	39
35	Estimation of biogeochemical rates from concentration profiles: A novel inverse method. Estuarine, Coastal and Shelf Science, 2012, 100, 26-37.	2.1	32
36	Pore Water Geochemistry as a Tool for Identifying and Dating Recent Mass-Transport Deposits. , 2012, ,		5

NATASCHA RIEDINGER

#	Article	IF	CITATION
37	Oxidative sulfur cycling in the deep biosphere of the Nankai Trough, Japan. Geology, 2010, 38, 851-854.	4.4	33
38	Methane at the sediment–water transition in Black Sea sediments. Chemical Geology, 2010, 274, 29-37.	3.3	22
39	A late Miocene–early Pliocene Antarctic deepwater record of repeated iron reduction events. Marine Geology, 2009, 266, 198-211.	2.1	9
40	Interactions between deformation and fluids in the frontal thrust region of the NanTroSEIZE transect offshore the Kii Peninsula, Japan: Results from IODP Expedition 316 Sites C0006 and C0007. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	65
41	Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth and Planetary Science Letters, 2006, 241, 876-887.	4.4	114
42	Diagenetic Alteration of Magnetic Signals by Anaerobic Oxidation of Methane Related to a Change in Sedimentation Rate. Geochimica Et Cosmochimica Acta, 2005, 69, 4117-4126.	3.9	144
43	Alteration of magnetic mineralogy at the sulfate–methane transition: Analysis of sediments from the Argentine continental slope. Physics of the Earth and Planetary Interiors, 2005, 151, 290-308.	1.9	87
44	Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments. Geochimica Et Cosmochimica Acta, 2003, 67, 2631-2647.	3.9	220
45	Data report: concentration and sulfur isotope composition of iron monosulfide and pyrite from sediment collected during IODP Expedition 316. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	4
46	Data report: pore water and solid-phase trace element distribution in sediments from IODP Expedition 334 Sites U1378 and U1379. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	0
47	Data report: solid-phase major and minor elements and iron and sulfur species in sediments of the Anholt Basin, Baltic Sea collected during IODP Expedition 347. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , ,	1.0	0