

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8450626/publications.pdf Version: 2024-02-01

VONCL

#	Article	IF	CITATIONS
1	Genetics of osteopontin in patients with chronic kidney disease: The German Chronic Kidney Disease study. PLoS Genetics, 2022, 18, e1010139.	3.5	5
2	Genome-wide studies reveal factors associated with circulating uromodulin and its relationships to complex diseases. JCI Insight, 2022, 7, .	5.0	12
3	Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals. Communications Biology, 2022, 5, .	4.4	17
4	Rare genetic variants affecting urine metabolite levels link population variation to inborn errors of metabolism. Nature Communications, 2021, 12, 964.	12.8	20
5	Discovery and prioritization of variants and genes for kidney function in >1.2 million individuals. Nature Communications, 2021, 12, 4350.	12.8	125
6	Therapeutic Effects of Inhibition of Sphingosine-1-Phosphate Signaling in HIF-2α Inhibitor-Resistant Clear Cell Renal Cell Carcinoma. Cancers, 2021, 13, 4801.	3.7	6
7	Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans. Nature Genetics, 2020, 52, 167-176.	21.4	101
8	Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program. Nature Communications, 2019, 10, 3842.	12.8	90
9	Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nature Communications, 2019, 10, 4130.	12.8	133
10	Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nature Genetics, 2019, 51, 1459-1474.	21.4	251
11	A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics, 2019, 51, 957-972.	21.4	549
12	ETR1/RDO3 Regulates Seed Dormancy by Relieving the Inhibitory Effect of the ERF12-TPL Complex on <i>DELAY OF GERMINATION1</i> Expression. Plant Cell, 2019, 31, 832-847.	6.6	62
13	Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nature Communications, 2018, 9, 4455.	12.8	181
14	Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels. Nature Communications, 2018, 9, 4228.	12.8	43
15	Genetics of serum urate concentrations and gout in a high-risk population, patients with chronic kidney disease. Scientific Reports, 2018, 8, 13184.	3.3	12
16	Genetic risk variants for membranous nephropathy: extension of and association with other chronic kidney disease aetiologies. Nephrology Dialysis Transplantation, 2017, 32, 325-332.	0.7	63
17	1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function. Scientific Reports, 2017, 7, 45040.	3.3	98
18	SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function. Journal of the American Society of Nephrology: JASN, 2017, 28, 981-994.	6.1	39

Yong Li

#	Article	IF	CITATIONS
19	Genetic loci associated with renal function measures and chronic kidney disease in children: the Pediatric Investigation for Genetic Factors Linked with Renal Progression Consortium. Nephrology Dialysis Transplantation, 2016, 31, gfv342.	0.7	35
20	Genome-wide Association Studies Identify Genetic Loci Associated With Albuminuria in Diabetes. Diabetes, 2016, 65, 803-817.	0.6	131
21	Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nature Communications, 2016, 7, 10023.	12.8	412
22	Histone H2B Monoubiquitination Mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 Is Involved in Anther Development by Regulating Tapetum Degradation-Related Genes in Rice Â. Plant Physiology, 2015, 168, 1389-1405.	4.8	78
23	Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes and Endocrinology,the, 2015, 3, 243-253.	11.4	115
24	Genome-Wide Meta-Analyses of Plasma Renin Activity and Concentration Reveal Association With the Kininogen 1 and Prekallikrein Genes. Circulation: Cardiovascular Genetics, 2015, 8, 131-140.	5.1	24
25	A Genetic Risk Score for Thyroid Peroxidase Antibodies Associates With Clinical Thyroid Disease in Community-Based Populations. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E799-E807.	3.6	38
26	The Structural Features of Thousands of T-DNA Insertion Sites Are Consistent with a Double-Strand Break Repair-Based Insertion Mechanism. Molecular Plant, 2015, 8, 1651-1664.	8.3	80
27	Analysis of gene expression during parabolic flights reveals distinct early gravity responses in <i><scp>A</scp>rabidopsis</i> roots. Plant Biology, 2014, 16, 129-141.	3.8	33
28	HISTONE DEACETYLASE 9 represses seedling traits in <i>Arabidopsis thaliana</i> dry seeds. Plant Journal, 2014, 80, 475-488.	5.7	107
29	Genetic Investigations of Kidney Disease: Core Curriculum 2013. American Journal of Kidney Diseases, 2013, 61, 832-844.	1.9	6
30	E-cadherin is required for the proper activation of the Lifr/Gp130 signaling pathway in mouse embryonic stem cells. Development (Cambridge), 2013, 140, 1684-1692.	2.5	55
31	<i>Arabidopsis</i> Paired Amphipathic Helix Proteins SNL1 and SNL2 Redundantly Regulate Primary Seed Dormancy via Abscisic Acid–Ethylene Antagonism Mediated by Histone Deacetylation. Plant Cell, 2013, 25, 149-166.	6.6	140
32	Control and consequences of chromatin compaction during seed maturation in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2012, 7, 338-341.	2.4	23
33	A novel role for histone methyltransferase KYP/SUVH4 in the control of <i>Arabidopsis</i> primary seed dormancy. New Phytologist, 2012, 193, 605-616.	7.3	104
34	Identification of the Arabidopsis REDUCED DORMANCY 2 Gene Uncovers a Role for the Polymerase Associated Factor 1 Complex in Seed Dormancy. PLoS ONE, 2011, 6, e22241.	2.5	77
35	T-DNA–mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nature Biotechnology, 2008, 26, 1015-1017	17.5	64
36	GABI-Kat SimpleSearch: an Arabidopsis thaliana T-DNA mutant database with detailed information for confirmed insertions. Nucleic Acids Research, 2007, 35, D874-D878.	14.5	50

Yong Li

#	Article	IF	CITATIONS
37	Analysis of T-DNA insertion site distribution patterns in Arabidopsis thaliana reveals special features of genes without insertions. Genomics, 2006, 87, 645-652.	2.9	38
38	The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta, 2005, 221, 243-254.	3.2	135
39	SWI3 Subunits of Putative SWI/SNF Chromatin-Remodeling Complexes Play Distinct Roles during Arabidopsis Development. Plant Cell, 2005, 17, 2454-2472.	6.6	124
40	Site Preferences of Insertional Mutagenesis Agents in Arabidopsis. Plant Physiology, 2005, 137, 168-175.	4.8	47
41	Tic32, an Essential Component in Chloroplast Biogenesis. Journal of Biological Chemistry, 2004, 279, 34756-34762.	3.4	95
42	An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Molecular Biology, 2003, 53, 247-259.	3.9	666
43	GABI-Kat SimpleSearch: a flanking sequence tag (FST) database for the identification of T-DNA insertion mutants in Arabidopsis thaliana. Bioinformatics, 2003, 19, 1441-1442.	4.1	61
44	High-throughput generation of sequence indexes from T-DNA mutagenized <i>Arabidopsis thaliana</i> lines. BioTechniques, 2003, 35, 1164-1168.	1.8	27