List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8450194/publications.pdf Version: 2024-02-01

		26630	14208
219	17,893	56	128
papers	citations	h-index	g-index
231	231	231	22352
all docs	docs citations	times ranked	citing authors

Τλκεμλρίι Νλολί

#	Article	IF	CITATIONS
1	A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnology, 2002, 20, 87-90.	17.5	2,518
2	An Expanded Palette of Genetically Encoded Ca ²⁺ Indicators. Science, 2011, 333, 1888-1891.	12.6	1,178
3	Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10554-10559.	7.1	970
4	Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3197-3202.	7.1	911
5	Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15651-15656.	7.1	884
6	Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nature Neuroscience, 2004, 7, 1104-1112.	14.8	728
7	Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature, 2001, 411, 1065-1068.	27.8	557
8	Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging. Molecular Cell, 2017, 67, 282-293.e7.	9.7	370
9	Astrocyte Calcium Signaling Transforms Cholinergic Modulation to Cortical Plasticity <i>In Vivo</i> . Journal of Neuroscience, 2011, 31, 18155-18165.	3.6	351
10	Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nature Methods, 2010, 7, 729-732.	19.0	319
11	Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochemical Journal, 2004, 381, 307-312.	3.7	312
12	The Expression of the MouseZic1, Zic2,andZic3Gene Suggests an Essential Role forZicGenes in Body Pattern Formation. Developmental Biology, 1997, 182, 299-313.	2.0	307
13	Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. Journal of Cell Biology, 2003, 160, 235-243.	5.2	268
14	Luminescent proteins for high-speed single-cell and whole-body imaging. Nature Communications, 2012, 3, 1262.	12.8	247
15	<i>Xenopus Zic</i> 3, a primary regulator both in neural and neural crest development. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11980-11985.	7.1	231
16	Improved Orange and Red Ca ²⁺ Indicators and Photophysical Considerations for Optogenetic Applications. ACS Chemical Neuroscience, 2013, 4, 963-972.	3.5	218
17	Functional Fluorescent Ca2+ Indicator Proteins in Transgenic Mice under TET Control. PLoS Biology, 2004, 2, e163.	5.6	216
18	Zic2 regulates the kinetics of neurulation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1618-1623.	7.1	206

#	Article	IF	CITATIONS
19	Beat-to-beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO Journal, 2001, 20, 4998-5007.	7.8	202
20	Identification of Mitochondrial DNA Polymorphisms That Alter Mitochondrial Matrix pH and Intracellular Calcium Dynamics. PLoS Genetics, 2006, 2, e128.	3.5	194
21	Mouse <i>Zic1</i> Is Involved in Cerebellar Development. Journal of Neuroscience, 1998, 18, 284-293.	3.6	188
22	Five colour variants of bright luminescent protein for real-time multicolour bioimaging. Nature Communications, 2016, 7, 13718.	12.8	181
23	The Mouse Zic Gene Family. Journal of Biological Chemistry, 1996, 271, 1043-1047.	3.4	178
24	Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells. Cell Reports, 2012, 2, 1645-1656.	6.4	175
25	Fine-Tuning of the Cytoplasmic Ca2+ Concentration Is Essential for Pollen Tube Growth Â. Plant Physiology, 2009, 150, 1322-1334.	4.8	172
26	Crystal Structure of Venus, a Yellow Fluorescent Protein with Improved Maturation and Reduced Environmental Sensitivity. Journal of Biological Chemistry, 2002, 277, 50573-50578.	3.4	165
27	Genetically encoded Ca2+ indicators: Properties and evaluation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1787-1797.	4.1	158
28	InÂVivo Visualization of Subtle, Transient, and Local Activity of Astrocytes Using an Ultrasensitive Ca2+ Indicator. Cell Reports, 2014, 8, 311-318.	6.4	158
29	Xenopus Zic family and its role in neural and neural crest development. Mechanisms of Development, 1998, 75, 43-51.	1.7	154
30	Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Frontiers in Neural Circuits, 2010, 4, 9.	2.8	154
31	Ca2+ Dynamics in a Pollen Grain and Papilla Cell during Pollination of Arabidopsis. Plant Physiology, 2004, 136, 3562-3571.	4.8	150
32	Ca ²⁺ Regulation of Mitochondrial ATP Synthesis Visualized at the Single Cell Level. ACS Chemical Biology, 2011, 6, 709-715.	3.4	140
33	Visualization of Synaptic Ca2+ /Calmodulin-Dependent Protein Kinase II Activity in Living Neurons. Journal of Neuroscience, 2005, 25, 3107-3112.	3.6	138
34	SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation. Scientific Reports, 2013, 3, 2629.	3.3	132
35	An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nature Methods, 2009, 6, 351-353.	19.0	126
36	LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nature Cell Biology, 2020, 22, 1252-1263.	10.3	117

#	Article	IF	CITATIONS
37	A Transient Rise in Free Mg2+ Ions Released from ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation. Current Biology, 2018, 28, 444-451.e6.	3.9	116
38	A Temporary Gating of Actin Remodeling during Synaptic Plasticity Consists of the Interplay between the Kinase and Structural Functions of CaMKII. Neuron, 2015, 87, 813-826.	8.1	115
39	Expanded palette of Nano-lanterns for real-time multicolor luminescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4352-4356.	7.1	110
40	High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates. Neuron, 2017, 94, 1085-1100.e6.	8.1	108
41	Reversible Dimerization of <i>Aequorea victoria</i> Fluorescent Proteins Increases the Dynamic Range of FRET-Based Indicators. ACS Chemical Biology, 2010, 5, 215-222.	3.4	99
42	A high-throughput method for development of FRET-based indicators for proteolysis. Biochemical and Biophysical Research Communications, 2004, 319, 72-77.	2.1	90
43	Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Nature Methods, 2008, 5, 339-345.	19.0	90
44	Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response. PLoS ONE, 2017, 12, e0172344.	2.5	89
45	Fluorescent Proteins for Investigating Biological Events in Acidic Environments. International Journal of Molecular Sciences, 2018, 19, 1548.	4.1	88
46	Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. Development (Cambridge), 2012, 139, 4202-4209.	2.5	86
47	A snapshot of plasma metabolites in first-episode schizophrenia: a capillary electrophoresis time-of-flight mass spectrometry study. Translational Psychiatry, 2014, 4, e379-e379.	4.8	78
48	Two Bistable Switches Govern M Phase Entry. Current Biology, 2016, 26, 3361-3367.	3.9	72
49	Brain oxidation is an initial process in sleep induction. Neuroscience, 2005, 130, 1029-1040.	2.3	71
50	Acid-Tolerant Monomeric GFP from Olindias formosa. Cell Chemical Biology, 2018, 25, 330-338.e7.	5.2	71
51	A fast- and positively photoswitchable fluorescent protein for ultralow-laser-power RESOLFT nanoscopy. Nature Methods, 2015, 12, 515-518.	19.0	67
52	Stepwise synaptic plasticity events drive the early phase of memory consolidation. Science, 2021, 374, 857-863.	12.6	67
53	Calcium signalling mediates self-incompatibility response in the Brassicaceae. Nature Plants, 2015, 1, 15128.	9.3	66
54	Cell-cycle-specific nestin expression coordinates with morphological changes in embryonic cortical neural progenitors. Journal of Cell Science, 2008, 121, 1204-1212.	2.0	65

#	Article	IF	CITATIONS
55	Optical inactivation of synaptic AMPA receptors erases fear memory. Nature Biotechnology, 2017, 35, 38-47.	17.5	65
56	Visualization of spatiotemporal activation of Notch signaling: Live monitoring and significance in neural development. Developmental Biology, 2005, 286, 311-325.	2.0	63
57	Local initiation of caspase activation in <i>Drosophila</i> salivary gland programmed cell death <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13367-13372.	7.1	62
58	Highlightable Ca ²⁺ Indicators for Live Cell Imaging. Journal of the American Chemical Society, 2013, 135, 46-49.	13.7	61
59	Mechanisms of protein fluorophore formation and engineering. Current Opinion in Chemical Biology, 2003, 7, 557-562.	6.1	60
60	Genetically encoded bioluminescent voltage indicator for multi-purpose use in wide range of bioimaging. Scientific Reports, 2017, 7, 42398.	3.3	57
61	A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging. Scientific Reports, 2018, 8, 8984.	3.3	57
62	Auto-Luminescent Genetically-Encoded Ratiometric Indicator for Real-Time Ca2+ Imaging at the Single Cell Level. PLoS ONE, 2010, 5, e9935.	2.5	53
63	<i>Zic3</i> is involved in the left-right specification of the <i>Xenopus</i> embryo. Development (Cambridge), 2000, 127, 4787-4795.	2.5	53
64	Chromophore-Assisted Light Inactivation of HaloTag Fusion Proteins Labeled with Eosin in Living Cells. ACS Chemical Biology, 2011, 6, 401-406.	3.4	51
65	Red fluorescent cAMP indicator with increased affinity and expanded dynamic range. Scientific Reports, 2018, 8, 1866.	3.3	50
66	Nicotine exposure alters human vascular smooth muscle cell phenotype from a contractile to a synthetic type. Atherosclerosis, 2014, 237, 464-470.	0.8	49
67	The molecular mechanism of apoptosis upon caspase-8 activation: Quantitative experimental validation of a mathematical model. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1825-1840.	4.1	47
68	Activity-Dependent Dynamics of the Transcription Factor of cAMP-Response Element Binding Protein in Cortical Neurons Revealed by Single-Molecule Imaging. Journal of Neuroscience, 2017, 37, 1-10.	3.6	45
69	Dependence of fluorescent protein brightness on protein concentration in solution and enhancement of it. Scientific Reports, 2016, 6, 22342.	3.3	44
70	Engineering Fluorescent Proteins. Advances in Biochemical Engineering/Biotechnology, 2005, 95, 1-15.	1.1	43
71	Optical Control of the Ca ²⁺ Concentration in a Live Specimen with a Genetically Encoded Ca ²⁺ -Releasing Molecular Tool. ACS Chemical Biology, 2014, 9, 1197-1203.	3.4	43
72	Recent progress in expanding the chemiluminescent toolbox for bioimaging. Current Opinion in Biotechnology, 2017, 48, 135-141.	6.6	43

#	Article	IF	CITATIONS
73	Quantitative comparison of genetically encoded Ca2+ indicators in cortical pyramidal cells and cerebellar purkinje cells. Frontiers in Cellular Neuroscience, 2011, 5, 18.	3.7	42
74	Flexible and dynamic nucleosome fiber in living mammalian cells. Nucleus, 2013, 4, 349-356.	2.2	42
75	Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure. Development (Cambridge), 2017, 144, 1307-1316.	2.5	42
76	Reversible Monolayer/Spheroid Cell Culture Switching by UCST-Type Thermoresponsive Ureido Polymers. ACS Applied Materials & Interfaces, 2016, 8, 31524-31529.	8.0	41
77	Thermometers for monitoring cellular temperature. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 30, 2-9.	11.6	41
78	Fluorescence imaging of potassium ions in living cells using a fluorescent probe based on a thrombin binding aptamer–peptide conjugate. Chemical Communications, 2012, 48, 4740.	4.1	37
79	Extensive use of FRET in biological imaging. Microscopy (Oxford, England), 2013, 62, 419-428.	1.5	37
80	Single-Molecule Imaging Reveals Dynamics of CREB Transcription Factor Bound to Its Target Sequence. Scientific Reports, 2015, 5, 10662.	3.3	37
81	A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy (Oxford, England), 2015, 64, 263-277.	1.5	37
82	Control of Calcium Signal Propagation to the Mitochondria by Inositol 1,4,5-Trisphosphate-binding Proteins. Journal of Biological Chemistry, 2005, 280, 12820-12832.	3.4	35
83	Survey on frontiers of language and robotics. Advanced Robotics, 2019, 33, 700-730.	1.8	35
84	Redox sensor proteins for highly sensitive direct imaging of intracellular redox state. Biochemical and Biophysical Research Communications, 2015, 457, 242-248.	2.1	33
85	Genetically Encoded Fluorescence/Bioluminescence Bimodal Indicators for Ca ²⁺ Imaging. ACS Sensors, 2019, 4, 1825-1834.	7.8	33
86	Synchronized ATP oscillations have a critical role in prechondrogenic condensation during chondrogenesis. Cell Death and Disease, 2012, 3, e278-e278.	6.3	30
87	General Anesthetic Conditions Induce Network Synchrony and Disrupt Sensory Processing in the Cortex. Frontiers in Cellular Neuroscience, 2016, 10, 64.	3.7	30
88	A high-throughput and single-tube recombination of crude PCR products using a DNA polymerase inhibitor and type IIS restriction enzyme. Journal of Biotechnology, 2008, 137, 1-7.	3.8	29
89	Changes in Cytosolic ATP Levels and Intracellular Morphology during Bacteria-Induced Hypersensitive Cell Death as Revealed by Real-Time Fluorescence Microscopy Imaging. Plant and Cell Physiology, 2012, 53, 1768-1775.	3.1	29
90	Dynamic polymorphism of Ras observed by single molecule FRET is the basis for molecular recognition. Biochemical and Biophysical Research Communications, 2006, 343, 809-815.	2.1	28

#	Article	IF	CITATIONS
91	Direct Heating of a Laser-Imploded Core by Ultraintense Laser-Driven Ions. Physical Review Letters, 2015, 114, 195002.	7.8	28
92	Bioluminescent Low-Affinity Ca ²⁺ Indicator for ER with Multicolor Calcium Imaging in Single Living Cells. ACS Chemical Biology, 2018, 13, 1862-1871.	3.4	27
93	Highlighted Ca2+ imaging with a genetically encoded â€~caged' indicator. Scientific Reports, 2013, 3, 1398.	3.3	26
94	Green monomeric photosensitizing fluorescent protein for photo-inducible protein inactivation and cell ablation. BMC Biology, 2018, 16, 50.	3.8	26
95	Smart fluorescent proteins: Innovation for barrierâ€free superresolution imaging in living cells. Development Growth and Differentiation, 2013, 55, 491-507.	1.5	25
96	Recent progress in luminescent proteins development. Current Opinion in Chemical Biology, 2015, 27, 46-51.	6.1	25
97	Alpha-synuclein facilitates to form short unconventional microtubules that have a unique function in the axonal transport. Scientific Reports, 2017, 7, 16386.	3.3	25
98	Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos. Developmental Biology, 2003, 260, 138-157.	2.0	24
99	Rab6a releases LIS1 from a dynein idling complex and activates dynein for retrograde movement. Nature Communications, 2013, 4, 2033.	12.8	24
100	Fluorescent Protein-Based Indicators for Functional Super-Resolution Imaging of Biomolecular Activities in Living Cells. International Journal of Molecular Sciences, 2019, 20, 5784.	4.1	23
101	Palmitoylated CKAP4 regulates mitochondrial functions through an interaction with VDAC2 at ER–mitochondria contact sites. Journal of Cell Science, 2020, 133, .	2.0	23
102	Confocal Imaging of Subcellular Ca2+ Concentrations Using a Dual-Excitation Ratiometric Indicator Based on Green Fluorescent Protein. Science Signaling, 2002, 2002, pl4-pl4.	3.6	22
103	In Vivo Imaging of Hierarchical Spatiotemporal Activation of Caspase-8 during Apoptosis. PLoS ONE, 2012, 7, e50218.	2.5	22
104	Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging. Journal of Biomedical Optics, 2015, 20, 1.	2.6	21
105	Nontrivial Effect of the Color-Exchange of a Donor/Acceptor Pair in the Engineering of Förster Resonance Energy Transfer (FRET)-Based Indicators. ACS Chemical Biology, 2016, 11, 1816-1822.	3.4	21
106	Current progress in genetically encoded voltage indicators for neural activity recording. Current Opinion in Chemical Biology, 2016, 33, 95-100.	6.1	21
107	Imaging local brain activity of multiple freely moving mice sharing the same environment. Scientific Reports, 2019, 9, 7460.	3.3	21
108	A carboxyl-terminal truncated version of the activin receptor mediates activin signals in earlyXenopusembryos. FEBS Letters, 1992, 312, 169-173.	2.8	20

#	Article	IF	CITATIONS
109	Non-invasive phenotyping and drug testing in single cardiomyocytes or beta-cells by calcium imaging and optogenetics. PLoS ONE, 2017, 12, e0174181.	2.5	20
110	Ca2+ monitoring in Plasmodium falciparum using the yellow cameleon-Nano biosensor. Scientific Reports, 2016, 6, 23454.	3.3	19
111	[7] Development of genetically encoded fluorescent indicators for calcium. Methods in Enzymology, 2003, 360, 202-225.	1.0	18
112	Lateralization, maturation, and anteroposterior topography in the lateral habenula revealed by ZIF268/EGR1 immunoreactivity and labeling history of neuronal activity. Neuroscience Research, 2015, 95, 27-37.	1.9	18
113	Optogenetic activation during detector "dead time―enables compatible real-time fluorescence imaging. Neuroscience Research, 2012, 73, 341-347.	1.9	17
114	Quantitative measurement of intracellular protein dynamics using photobleaching or photoactivation of fluorescent proteins. Microscopy (Oxford, England), 2014, 63, 403-408.	1.5	17
115	Autoinduction of activin genes in early Xenopus embryos. Biochemical Journal, 1994, 298, 275-280.	3.7	16
116	Xenopus Polycomblike 2 (XPcl2) controls anterior to posterior patterning of the neural tissue. Development Genes and Evolution, 2001, 211, 309-314.	0.9	16
117	Spontaneously Blinking Fluorescent Protein for Simple Single Laser Super-Resolution Live Cell Imaging. ACS Chemical Biology, 2018, 13, 1938-1943.	3.4	16
118	Mitochondrial calcium response in human transformed lymphoblastoid cells. Life Sciences, 2002, 71, 581-590.	4.3	15
119	MagIC, a genetically encoded fluorescent indicator for monitoring cellular Mg2+ using a non-Förster resonance energy transfer ratiometric imaging approach. Journal of Biomedical Optics, 2015, 20, 1.	2.6	15
120	Intracellular Calcium Spikes in Rat Suprachiasmatic Nucleus Neurons Induced by BAPTA-Based Calcium Dyes. PLoS ONE, 2010, 5, e9634.	2.5	15
121	Genetically encoded Ca2+ indicators; expanded affinity range, color hue and compatibility with optogenetics. Frontiers in Molecular Neuroscience, 2014, 7, 90.	2.9	14
122	Threshold-free evaluation of near-surface diffusion and adsorption-dominated motion from single-molecule tracking data of single-stranded DNA through total internal reflection fluorescence microscopy. Japanese Journal of Applied Physics, 2015, 54, 125601.	1.5	14
123	Intracellular trafficking of particles inside endosomal vesicles is regulated by particle size. Journal of Controlled Release, 2017, 260, 183-193.	9.9	14
124	Acid-Tolerant Reversibly Switchable Green Fluorescent Protein for Super-resolution Imaging under Acidic Conditions. Cell Chemical Biology, 2019, 26, 1469-1479.e6.	5.2	14
125	Ratiometric Bioluminescent Indicator for Simple and Rapid Diagnosis of Bilirubin. ACS Sensors, 2021, 6, 889-895.	7.8	14
126	Intracellular Heat Transfer and Thermal Property Revealed by Kilohertz Temperature Imaging with a Genetically Encoded Nanothermometer. Nano Letters, 2022, 22, 5698-5707.	9.1	14

#	Article	IF	CITATIONS
127	Arl3 and LC8 regulate dissociation of dynactin from dynein. Nature Communications, 2014, 5, 5295.	12.8	13
128	An improved inverse-type Ca2+ indicator can detect putative neuronal inhibition in Caenorhabditis elegans by increasing signal intensity upon Ca2+ decrease. PLoS ONE, 2018, 13, e0194707.	2.5	12
129	Enhanced brightness of bacterial luciferase by bioluminescence resonance energy transfer. Scientific Reports, 2021, 11, 14994.	3.3	12
130	Highly biocompatible super-resolution fluorescence imaging using the fast photoswitching fluorescent protein Kohinoor and SPoD-ExPAN with <i>L p</i> -regularized image reconstruction. Microscopy (Oxford, England), 2018, 67, 89-98.	1.5	12
131	Anteroposterior Patterning in Xenopus Embryos: Egg Fragment Assay System Reveals a Synergy of Dorsalizing and Posteriorizing Embryonic Domains. Developmental Biology, 2002, 252, 15-30.	2.0	11
132	Statistical characterisation of singleâ€stranded DNA motion near glass surface beyond diffusion coefficient. Micro and Nano Letters, 2014, 9, 257-260.	1.3	11
133	Fluorescence and Bioluminescence Imaging of Angiogenesis in Flk1-Nano-lantern Transgenic Mice. Scientific Reports, 2017, 7, 46597.	3.3	11
134	Significance of PGR5-dependent cyclic electron flow for optimizing the rate of ATP synthesis and consumption in Arabidopsis chloroplasts. Photosynthesis Research, 2019, 139, 359-365.	2.9	11
135	Smartphone-Based Portable Bioluminescence Imaging System Enabling Observation at Various Scales from Whole Mouse Body to Organelle. Sensors, 2020, 20, 7166.	3.8	11
136	Editorial for the Special Issue of Biophysical Reviews focused on the Biophysical Society of Japan with select scientific content from the 57th BSJ annual meeting, Miyazaki, Japan. Biophysical Reviews, 2020, 12, 183-185.	3.2	11
137	Exploring rare cellular activity in more than one million cells by a transscale scope. Scientific Reports, 2021, 11, 16539.	3.3	11
138	Saturated excitation of fluorescent proteins for subdiffraction-limited imaging of living cells in three dimensions. Interface Focus, 2013, 3, 20130007.	3.0	10
139	Methods for monitoring signaling molecules in cellular compartments. Cell Calcium, 2017, 64, 12-19.	2.4	10
140	Production of intense, pulsed, and point-like neutron source from deuterated plastic cavity by mono-directional kilo-joule laser irradiation. Applied Physics Letters, 2017, 111, 233506.	3.3	10
141	Ultrasensitive Imaging of Ca2+ Dynamics in Pancreatic Acinar Cells of Yellow Cameleon-Nano Transgenic Mice. International Journal of Molecular Sciences, 2014, 15, 19971-19986.	4.1	9
142	Characterizing a fast-response, low-afterglow liquid scintillator for neutron time-of-flight diagnostics in fast ignition experiments. Review of Scientific Instruments, 2014, 85, 11E126.	1.3	9
143	Partial agonistic effects of pilocarpine on Ca ²⁺ responses and salivary secretion in the submandibular glands of live animals. Experimental Physiology, 2015, 100, 640-651.	2.0	9
144	A simple microfluidic device for live-imaging of the vertical section of epithelial cells. Analyst, The, 2020, 145, 667-674.	3.5	9

#	Article	IF	CITATIONS
145	A highly-sensitive genetically encoded temperature indicator exploiting a temperature-responsive elastin-like polypeptide. Scientific Reports, 2021, 11, 16519.	3.3	9
146	Facilitated intracellular transport of TrkA by an interaction with nerve growth factor. Developmental Neurobiology, 2011, 71, 634-649.	3.0	8
147	Imaging Intracellular Free Ca2+ Concentration Using Yellow Cameleons. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot078642-pdb.prot078642.	0.3	8
148	Nondestructive Imaging of Internal Structures of Frog (Xenopus laevis) Embryos by Shadow-Projection X-Ray Microtomography. Japanese Journal of Applied Physics, 1994, 33, L556-L558.	1.5	7
149	Spectral Fingerprinting of Individual Cells Visualized by Cavity-Reflection-Enhanced Light-Absorption Microscopy. PLoS ONE, 2015, 10, e0125733.	2.5	7
150	Dysregulation of a potassium channel, THIK-1, targeted by caspase-8 accelerates cell shrinkage. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2766-2783.	4.1	7
151	Ratiometric Bioluminescent Indicator for a Simple and Rapid Measurement of Thrombin Activity Using a Smartphone. Analytical Chemistry, 2021, 93, 13520-13526.	6.5	7
152	Self-Assembly ofm-Diethynylbenzene Macrocycles Containing Exoannular Chiral Side Chains. Advanced Functional Materials, 2006, 16, 1549-1554.	14.9	6
153	Hierarchical Development of Motile Polarity in Durotactic Cells Just Crossing an Elasticity Boundary. Cell Structure and Function, 2020, 45, 33-43.	1.1	6
154	Hyperspectral two-photon excitation microscopy using visible wavelength. Optics Letters, 2021, 46, 37.	3.3	6
155	Nonlinear Structured Illumination Using a Fluorescent Protein Activating at the Readout Wavelength. PLoS ONE, 2016, 11, e0165148.	2.5	6
156	Formation of Well-Ordered Step Structures on Si(111) by a Combination of Chemical Etching and Surface Scratching for Producing Macrosized Patterns. Journal of Physical Chemistry B, 2004, 108, 21-23.	2.6	5
157	New Advances in Nanomedicine: Diagnosis and Preventive Medicine. Medical Clinics of North America, 2007, 91, 871-879.	2.5	5
158	Development of multichannel low-energy neutron spectrometer. Review of Scientific Instruments, 2014, 85, 11E125.	1.3	5
159	Photonuclear reaction based high-energy x-ray spectrometer to cover from 2 MeV to 20 MeV. Review of Scientific Instruments, 2014, 85, 11D629.	1.3	5
160	Fabrication of Ca2+-K+ Image Sensor Using an Inkjet Method and Its Application to Living Cells. ECS Transactions, 2016, 75, 243-249.	0.5	5
161	Simultaneous imaging of multiple cellular events using high-accuracy fluorescence polarization microscopy. Microscopy (Oxford, England), 2017, 66, 110-119.	1.5	5
162	Uninterrupted monitoring of drug effects in human-induced pluripotent stem cell-derived cardiomyocytes with bioluminescence Ca2+ microscopy. BMC Research Notes, 2018, 11, 313.	1.4	5

#	Article	IF	CITATIONS
163	A photoswitchable fluorescent protein for hours-time-lapse and sub-second-resolved super-resolution imaging. Microscopy (Oxford, England), 2021, 70, 340-352.	1.5	5
164	Visible-wavelength two-photon excitation microscopy with multifocus scanning for volumetric live-cell imaging. Journal of Biomedical Optics, 2019, 25, 1.	2.6	5
165	A Mercury Arc Lamp-Based Multi-Color Confocal Real Time Imaging System for Cellular Structure and Function, 2008, 33, 133-141.	1.1	4
166	Two-Photon Excitation Behavior of Thiophene-Based Oligomers and a Polymer. Journal of Nanoscience and Nanotechnology, 2009, 9, 670-672.	0.9	4
167	Simultaneous monitoring of Ca ²⁺ responses and salivary secretion in live animals reveals a threshold intracellular Ca ²⁺ concentration for salivation. Experimental Physiology, 2019, 104, 61-69.	2.0	4
168	Bioluminescent Ratiometric Indicator for Analysis of Water Hardness in Household Water. Sensors, 2020, 20, 3164.	3.8	4
169	Genetically Encoded Photosensitizer for Destruction of Protein or Cell Function. Advances in Experimental Medicine and Biology, 2021, 1293, 265-279.	1.6	4
170	Conjugation of Both On-axis and Off-axis Light in Nipkow Disk Confocal Microscope to Increase Availability of Incoherent Light Source. Cell Structure and Function, 2011, 36, 237-246.	1.1	4
171	Development of FRET-based indicators for visualizing homophilic trans interaction of a clustered protocadherin. Scientific Reports, 2021, 11, 22237.	3.3	4
172	Biomimetic Chemical Sensing by Fluorescence Signals Using a Virus-like Particle-Based Platform. ACS Sensors, 2018, 3, 87-92.	7.8	3
173	Visible-Wavelength Multiphoton Activation Confocal Microscopy. ACS Photonics, 2021, 8, 2666-2673.	6.6	3
174	Method for Detecting Emission Spectral Change of Bioluminescent Ratiometric Indicators by a Smartphone. Methods in Molecular Biology, 2021, 2274, 295-304.	0.9	3
175	Realâ€Time Chemiluminescence Imaging Using Nano‣antern Probes. Current Protocols in Chemical Biology, 2014, 6, 221-236.	1.7	3
176	Auto-luminescent genetically encoded ratiometric indicator for real-time Ca2+imaging at the single cell level. , 2011, , .		1
177	Rotational motion of rhodamine 6G tethered to actin through oligo(ethylene glycol) linkers studied by frequency-domain fluorescence anisotropy. Biophysics and Physicobiology, 2015, 12, 87-102.	1.0	1
178	Super-duper chemiluminescent proteins applicable to wide range of bioimaging. , 2017, , .		1
179	Multicolor Bioluminescence Imaging of Subcellular Structures and Multicolor Calcium Imaging in Single Living Cells. Methods in Molecular Biology, 2021, 2350, 229-237.	0.9	1
180	A novel petal up-regulated <i>PhXTH7</i> promoter analysis in <i>Petunia hybrida</i> by using bioluminescence reporter gene. Plant Biotechnology, 2021, 38, 197-204.	1.0	1

#	Article	IF	CITATIONS
181	Highly Biocompatible Super-resolution Imaging: SPoD-OnSPAN. Neuromethods, 2020, , 229-244.	0.3	1
182	Hyperspectral fluorescence imaging by using visible-wavelength two-photon excitation. , 2020, , .		1
183	Structureâ€based analysis and evolution of a monomerized redâ€colored chromoprotein from the <i>Olindias formosa</i> jellyfish. Protein Science, 2022, 31, e4285.	7.6	1
184	1006 Mouse Zic1 has an essential tole in cerebellar development. Neuroscience Research, 1997, 28, S118.	1.9	0
185	3P305 Development of a fluorescent protein with deep blue colour(Bioimaging,Poster Presentations). Seibutsu Butsuri, 2007, 47, S279.	0.1	0
186	2P-338 Long time physiological imaging with a red-shifted Ca^<2+> indicator based on FRET(The 46th) Tj ETQq0	0 8 rgBT /	Overlock 10
187	2P-341 An ultramarine fluorescent protein with stable photostability and no pH sensitivity(The 46th) Tj ETQq1 1	0.784314 0.1	rgBT /Overlo
188	How to Measure Diffusion Coefficient of Biomolecules in Living Cells. Seibutsu Butsuri, 2009, 49, 181-186.	0.1	0
189	2P326 Toward ultimate size down of Aequorea fluorescent protein Venus(The 48th Annual Meeting of) Tj ETQq1	1 0.7843 0.1	14 _. rgBT /Ove
190	Engineering Fluorescent Proteins to Expand Bio-Imaging Technology. The Review of Laser Engineering, 2010, 38, 416-420.	0.0	0
191	Development of ultra-sensitive Ca2+indicators, yellow cameleon-nanos. , 2011, , .		0
192	Imaging the dynamics of intracellular protein translocation by photoconversion of phamret ybr/ROM. Journal of Microscopy, 2011, 242, 250-261.	1.8	0
193	C4-P-08Biocompatible super-resolution imaging of fast photoswitching fluorescent proteins by polarization demodulation/excitation angle narrowing. Microscopy (Oxford, England), 2015, 64, i137.2-i137.	1.5	0
194	A Temporary Gating of Actin Remodeling during Synaptic Plasticity Consists of the Interplay between the Kinase and Structural Functions of CaMKII. Neuron, 2015, 88, 433.	8.1	0
195	Real Time Imaging of Biological Phenomena with Super-duper Luminescent Proteins. Cytologia, 2015, 80, 1-2.	0.6	0
196	Various Application of Fluorescent and Chemiluminescent Proteins. Seibutsu Butsuri, 2015, 55, 305-310.	0.1	0
197	Special Section Guest Editorial:Protein Photonics for Imaging, Sensing, and Manipulation: Honoring Prof. Osamu Shimomura, a Pioneer of Photonics for Biomedical Research. Journal of Biomedical Optics, 2015, 20, 101201.	2.6	0
198	C5-O-04Genetically-Ecoded Tools to Optically Control and Image Ca ²⁺ Dynamics. Microscopy (Oxford, England), 2015, 64, i73.1-i73.	1.5	0

#	Article	IF	CITATIONS
199	C6-P-07Spectral fingerprinting of individual cells visualized by cavity-reflection-enhanced light-absorption microscopy. Microscopy (Oxford, England), 2015, 64, i143.2-i143.	1.5	0
200	C5-P-03An Expanded Color Palette of Nano-lanterns, the Super-brilliant Luminescent Proteins for Multicolor, Real-time Bioluminescence Imaging. Microscopy (Oxford, England), 2015, 64, i140.1-i140.	1.5	0
201	Luminescence Imaging: (a) Multicolor Visualization of Ca2+ Dynamics in Different Cellular Compartments and (b) Video-Rate Tumor Detection in a Freely Moving Mouse. Methods in Molecular Biology, 2016, 1461, 289-297.	0.9	0
202	The current trends and future prospect of neural activity measurement by genetically-encoded voltage indicators. Drug Delivery System, 2016, 31, 119-126.	0.0	0
203	Bioluminescent indicator applicable to membrane voltage recording in various excitable cell types. , 2017, , .		0
204	Five Color Variants of Bright Luminescent Protein for Multi-Purpose Use in Wide Range of Bioimaging. Seibutsu Butsuri, 2017, 57, 262-264.	0.1	0
205	<fname lang="en">Development of a GFP Variant with Fast and Efficient Maturation Properties</fname> . Seibutsu Butsuri, 2002, 42, 305-308.	0.1	0
206	Report on the 42nd Summer School for the Organization of Young Biophysicists. Seibutsu Butsuri, 2003, 43, 40-41.	0.1	0
207	NEW METHODS FOR DEVELOPMENT OF FRET-BASED BIOSENSORS WITH EXPANDED DYNAMIC RANGE. , 2005, , .		0
208	Genetically Encoded Fluorescent Calcium Indicator Proteins. , 2005, , 101-111.		0
209	Development of BRET based Ca2+ Indicator. Seibutsu Butsuri, 2012, 52, 030-031.	0.1	0
210	Nonlinear Deep-UV excitation microscopy for high-resolution multicolor imaging of fluorescent proteins. , 2013, , .		0
211	Simultaneous single and two-photon excitation of fluorescent proteins for multicolor imaging of cellular structures. , 2014, , .		0
212	CHAPTER 6. Optogenetic Control of the Generation of Reactive Oxygen Species for Photoinducible Protein Inactivation and Cell Ablation. Comprehensive Series in Photochemical and Photobiological Sciences, 2018, , 117-136.	0.3	0
213	A bimodal Ca2+ indicator toward spatiotemporally-scalable imaging. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY32-4.	0.0	0
214	A novel fiber-free technique for brain activity imaging in multiple freely behaving mice. , 2018, , .		0
215	A bimodal bioluminescent Ca2+ indicator toward spatiotemporally-scalable imaging. , 2019, , .		0
216	What is the Most Important Thing for Life. Seibutsu Butsuri, 2020, 60, 359-361.	0.1	0

#	Article	IF	CITATIONS
217	Development of a Wireless Brain Activity Recording Method Based on Bioluminescence. Seibutsu Butsuri, 2020, 60, 117-120.	0.1	0
218	Live Imaging of cAMP Signaling in D. discoideum Based on a Bioluminescent Indicator, Nano-lantern (cAMP). Methods in Molecular Biology, 2022, 2483, 231-240.	0.9	0
219	Fluorescence Imaging of Extracellular Potassium Ion Using Potassium Sensing Oligonucleotide. Frontiers in Chemistry, 0, 10, .	3.6	0