
Jayashree Milind Nagarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8447972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Base free palladium-Ag2O catalyzed decarboxylative cross-coupling of alkynyl carboxylic acids with triarylbismuth reagents. Catalysis Communications, 2018, 104, 78-81.	3.3	8
2	Synthesis of 2-aryl quinazolines from (2-aminophenyl)methanol and oxime ether catalyzed by copper ferrite nanoparticles. Tetrahedron Letters, 2017, 58, 779-784.	1.4	7
3	A Simple Metal Free Oxidation of Sulfide Compounds. Catalysis Letters, 2017, 147, 181-187.	2.6	10
4	Desulfinylative Pd-catalyzed coupling reaction of arenediazonium salt with aryl sulfinates to give unsymmetrical biaryls. Tetrahedron Letters, 2017, 58, 2936-2939.	1.4	6
5	Pd(NHC)PEPPSI-diazonium salts: an efficient blend for the decarboxylative Sonogashira cross coupling reaction. New Journal of Chemistry, 2017, 41, 6775-6780.	2.8	23
6	Tandem and chemoselective synthesis of benzil derivatives from styrene and arene diazonium salts. Tetrahedron Letters, 2017, 58, 1834-1838.	1.4	8
7	Atom economic palladium catalyzed novel approach for arylation of benzothiazole and benzoxazole with triarylbismuth reagents via C H activation. Catalysis Communications, 2017, 89, 29-33.	3.3	12
8	Aryl diazonium salt and thioacetamide: a catalyst free, efficient blend of an inexpensive arylating agent with "S―surrogate for sulphide synthesis. RSC Advances, 2016, 6, 90046-90050.	3.6	3
9	Palladium catalyzed desulfinylative couplings between aryl sulfinates and aryl bromide/iodide for the synthesis of biaryls. Tetrahedron, 2016, 72, 5051-5056.	1.9	12
10	Nickel–glycerol: an efficient, recyclable catalysis system for Suzuki cross coupling reactions using aryl diazonium salts. New Journal of Chemistry, 2016, 40, 1564-1570.	2.8	22
11	One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation. Materials Research Bulletin, 2015, 70, 539-544.	5.2	10
12	Ligand-free C–C and C–N cross-couplings with Pd/Nf-G nanocomposite. Tetrahedron Letters, 2015, 56, 4463-4467.	1.4	11
13	An efficient magnetic copper ferrite nanoparticle catalysed ligand and solvent free synthesis of N-aryl amide from aldoximes and iodobenzene. RSC Advances, 2015, 5, 105353-105358.	3.6	8
14	Copper catalyzed synthesis of unsymmetrical diaryl sulfones from an arenediazonium salt and sodium p-toluenesulfinate. RSC Advances, 2015, 5, 62926-62930.	3.6	23
15	Palladium on manganese ferrite: an efficient catalyst for ligand free decarboxylative Sonogashira reaction with arene diazonium tetrafluoroborate. Tetrahedron Letters, 2015, 56, 1771-1774.	1.4	25
16	Electrochemical Synthesis of Pd Nano Particles on Pencil-Graphite and Application for Suzuki Coupling Reactions. Catalysis Letters, 2015, 145, 1817-1824.	2.6	3
17	Palladium on manganese ferrite: an efficient catalyst for one pot synthesis of primary amides from iodobenzene. RSC Advances, 2015, 5, 6636-6641.	3.6	6
18	Palladium(II) on Functionalized NiFe2O4: An Efficient and Recyclable Phosphine-Free Heterogeneous Catalyst for Suzuki Coupling Reaction. Catalysis Letters, 2015, 145, 723-730.	2.6	25

#	Article	IF	CITATIONS
19	Magnetically separable nano CeO2: a highly efficient catalyst for ligand free direct C–H arylation of heterocycles. Tetrahedron Letters, 2015, 56, 693-699.	1.4	27
20	An efficient magnetic copper ferrite nanoparticle: for one pot synthesis of 2-substituted benzoxazole via redox reactions. Tetrahedron Letters, 2015, 56, 206-210.	1.4	47
21	A Novel Approach for the Synthesis of Biologically Important N-Aryl Amides with Arenediazonium Salts. Synthesis, 2014, 46, 2951-2956.	2.3	13
22	Facile approach to the electrochemical synthesis of palladium-reduced graphene oxide and its application for Suzuki coupling reaction. Tetrahedron Letters, 2014, 55, 857-860.	1.4	50
23	Choline chloride based eutectic solvent: an efficient and reusable solvent system for the synthesis of primary amides from aldehydes and from nitriles. RSC Advances, 2014, 4, 1102-1106.	3.6	58
24	Choline chloride based deep eutectic solvent as an efficient solvent for the benzylation of phenols. Tetrahedron Letters, 2014, 55, 7243-7246.	1.4	21
25	Nano Pd–Fe ₃ O ₄ @Alg beads: as an efficient and magnetically separable catalyst for Suzuki, Heck and Buchwald–Hartwig coupling reactions. RSC Advances, 2014, 4, 53387-53396.	3.6	22
26	An efficient catalyst-free and chemoselective synthesis of azobenzenes from nitrobenzenes. RSC Advances, 2014, 4, 42947-42951.	3.6	15
27	Electrochemical synthesis of copper nanoparticles on nafion–graphene nanoribbons and its application for the synthesis of diaryl ethers. Tetrahedron Letters, 2014, 55, 4917-4922.	1.4	19
28	Electrochemically codeposited reduced graphene oxide and palladium nanoparticles: An efficient heterogeneous catalyst for Heck coupling reaction. Colloids and Interface Science Communications, 2014, 1, 47-49.	4.1	22
29	Electrochemical Deposition of Highly Dispersed Palladium Nanoparticles on Nafionâ€Graphene Film in Presence of Ferrous Ions for Ethanol Electrooxidation. Fuel Cells, 2013, 13, 364-370.	2.4	18
30	Nano ceria catalyzed synthesis of substituted benzimidazole, benzothiazole, and benzoxazole in aqueous media. Tetrahedron Letters, 2013, 54, 6986-6990.	1.4	93
31	Palladium supported on zinc ferrite: an efficient catalyst for ligand free C–C and C–O cross coupling reactions. Tetrahedron Letters, 2013, 54, 6319-6323.	1.4	44
32	Palladium supported on zinc ferrite: A highly active, magnetically separable catalyst for ligand free Suzuki and Heck coupling. Catalysis Communications, 2013, 35, 11-16.	3.3	72
33	Amberlyst-15 catalyzed synthesis of 5-substituted 1-H-tetrazole via [3+2] cycloaddition of nitriles and sodium azide. Tetrahedron Letters, 2013, 54, 106-109.	1.4	63
34	Electrochemical synthesis and characterization of palladium nanoparticles on nafion–graphene support and its application for Suzuki coupling reaction. Tetrahedron Letters, 2013, 54, 3457-3461.	1.4	49
35	One-Pot Synthesis of Nitriles from Aldehydes Catalyzed by Deep Eutectic Solvent. Synthesis, 2013, 45, 3295-3299.	2.3	22
36	Nanoceria-catalyzed Highly Efficient Procedure for <i>N</i> -Formylation of Amines at Room Temperature under Solvent-free Conditions. Chemistry Letters, 2013, 42, 524-526.	1.3	10

#	Article	IF	CITATIONS
37	Synthesis of 5-substituted 1H-tetrazoles using a nano ZnO/Co3O4 catalyst. Catalysis Science and Technology, 2012, 2, 1324.	4.1	61
38	Formylation and acetylation of alcohols using Amberlyst-15 [®] as a recyclable heterogeneous catalyst. Green Chemistry Letters and Reviews, 2012, 5, 27-32.	4.7	9
39	Formulation, Rheology, and Hypolepidemic Activity of Vegetable Oil-Based Eggless and Low-Fat Food Emulsions. Journal of Dispersion Science and Technology, 2012, 33, 1006-1011.	2.4	2
40	A novel method for the synthesis of 5-substituted 1H-tetrazole from oxime and sodium azide. Tetrahedron Letters, 2012, 53, 3706-3709.	1.4	55
41	Nano ceria catalyzed Ullmann type coupling reactions. Tetrahedron Letters, 2011, 52, 5220-5223.	1.4	28
42	Reductive carbonylation of aryl and heteroaryl iodides using Pd(acac)2/dppm as an efficient catalyst. Tetrahedron Letters, 2011, 52, 2383-2386.	1.4	24
43	Nano ceria catalyzed synthesis of $\hat{l}\pm$ -aminophosphonates under ultrasonication. Tetrahedron Letters, 2011, 52, 3499-3504.	1.4	51
44	Synthesis of highly substituted indoles in presence of solid acid catalysts. Green Chemistry Letters and Reviews, 2011, 4, 121-126.	4.7	8
45	Copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate) catalyzed synthesis of N-substituted ferrocenes. Tetrahedron Letters, 2008, 49, 1384-1387.	1.4	21
46	Palladium β-diketonate complex catalyzed synthesis of monosubstituted arylferrocenes. Tetrahedron Letters, 2008, 49, 5252-5254.	1.4	20
47	Synthesis of bis(indolyl)methanes catalyzed by surface modified zirconia. Catalysis Communications, 2008, 9, 1728-1733.	3.3	28
48	Emulsification of Vegetable Oils using a Blend of Nonionic Surfactants for Cosmetic Applications. Journal of Dispersion Science and Technology, 2007, 28, 1077-1080.	2.4	32
49	Zinc Mediated Selective Acylation of Ferrocene under Solvent-Free Conditions. Journal of Chemical Research, 2007, 2007, 426-428.	1.3	7