
Ah Buck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8447670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cells choose their words wisely. Cell, 2022, 185, 1114-1116.	13.5	4
2	Microfluidic system for near-patient extraction and detection of miR-122 microRNA biomarker for drug-induced liver injury diagnostics. Biomicrofluidics, 2022, 16, 024108.	1.2	6
3	Extracellular vesicles from malariaâ€infected red blood cells: not all are secreted equal. EMBO Reports, 2022, 23, .	2.0	4
4	O14â€Whole blood profiling of T-cell derived miRNA allows the development of prognostic models in IBD. , 2021, , .		0
5	MicroRNAs and extracellular vesicles in the gut: new host modulators of the microbiome?. MicroLife, 2021, 2, .	1.0	3
6	Disentangling sRNA-Seq data to study RNA communication between species. Nucleic Acids Research, 2020, 48, e21-e21.	6.5	8
7	Development of caecaloids to study host–pathogen interactions: new insights into immunoregulatory functions of Trichuris muris extracellular vesicles in the caecum. International Journal for Parasitology, 2020, 50, 707-718.	1.3	23
8	Extracellular vesicles from Heligmosomoides bakeri and Trichuris muris contain distinct microRNA families and small RNAs that could underpin different functions in the host. International Journal for Parasitology, 2020, 50, 719-729.	1.3	16
9	Helminth extracellular vesicles: great balls of wonder. International Journal for Parasitology, 2020, 50, 621-622.	1.3	5
10	Whole Blood Profiling of T-cell-Derived microRNA Allows the Development of Prognostic models in Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2020, 14, 1724-1733.	0.6	16
11	Intracellular redox potential is correlated with miRNA expression in MCF7 cells under hypoxic conditions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19753-19759.	3.3	11
12	Secretion of an Argonaute protein by a parasitic nematode and the evolution of its siRNA guides. Nucleic Acids Research, 2019, 47, 3594-3606.	6.5	75
13	Highlights of the miniâ€symposium on extracellular vesicles in interâ€organismal communication, held in Munich, Germany, August 2018. Journal of Extracellular Vesicles, 2019, 8, 1590116.	5.5	16
14	Extracellular RNA in viral–host interactions: Thinking outside the cell. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1535.	3.2	12
15	Production and Application of Stable Isotope-Labeled Internal Standards for RNA Modification Analysis. Genes, 2019, 10, 26.	1.0	38
16	Small RNAs and extracellular vesicles: New mechanisms of cross-species communication and innovative tools for disease control. PLoS Pathogens, 2019, 15, e1008090.	2.1	114
17	Comparative analysis of small RNAs released by the filarial nematode Litomosoides sigmodontis in vitro and in vivo. PLoS Neglected Tropical Diseases, 2019, 13, e0007811.	1.3	19
18	<i>Daphnia magna</i> micro <scp>RNA</scp> s respond to nutritional stress and ageing but are not transgenerational. Molecular Ecology, 2018, 27, 1402-1412.	2.0	21

Ан Виск

#	Article	IF	CITATIONS
19	MicroRNA-146a controls functional plasticity in Î ³ δT cells by targeting NOD1. Science Immunology, 2018, 3, .	5.6	24
20	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
21	Immune stimuli shape the small non-coding transcriptome of extracellular vesicles released by dendritic cells. Cellular and Molecular Life Sciences, 2018, 75, 3857-3875.	2.4	57
22	RNA-mediated communication between helminths and their hosts: The missing links. RNA Biology, 2017, 14, 436-441.	1.5	27
23	Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. Journal of Extracellular Vesicles, 2017, 6, 1286095.	5.5	561
24	Broad-Spectrum Inhibition of Respiratory Virus Infection by MicroRNA Mimics Targeting p38 MAPK Signaling. Molecular Therapy - Nucleic Acids, 2017, 7, 256-266.	2.3	56
25	Extracellular Vesicles from a Helminth Parasite Suppress Macrophage Activation and Constitute an Effective Vaccine for Protective Immunity. Cell Reports, 2017, 19, 1545-1557.	2.9	197
26	Small <scp>RNA</scp> s and extracellular vesicles in filarial nematodes: From nematode development to diagnostics. Parasite Immunology, 2017, 39, e12395.	0.7	23
27	A preliminary proteomic characterisation of extracellular vesicles released by the ovine parasitic nematode, Teladorsagia circumcincta. Veterinary Parasitology, 2016, 221, 84-92.	0.7	53
28	Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology. Journal of Extracellular Vesicles, 2016, 5, 30741.	5.5	74
29	Host parasite communications—Messages from helminths for the immune system. Molecular and Biochemical Parasitology, 2016, 208, 33-40.	0.5	104
30	Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs. PLoS Neglected Tropical Diseases, 2016, 10, e0004452.	1.3	113
31	Protein and small nonâ€coding RNAâ€enriched extracellular vesicles are released by the pathogenic blood fluke <i>Schistosoma mansoni</i> . Journal of Extracellular Vesicles, 2015, 4, 28665.	5.5	140
32	Extracellular Onchocerca-derived small RNAs in host nodules and blood. Parasites and Vectors, 2015, 8, 58.	1.0	98
33	RNA-mediated degradation of microRNAs: A widespread viral strategy?. RNA Biology, 2015, 12, 579-585.	1.5	30
34	Exosomes and Other Extracellular Vesicles: The New Communicators in Parasite Infections. Trends in Parasitology, 2015, 31, 477-489.	1.5	307
35	The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster. PLoS Biology, 2015, 13, e1002210.	2.6	272
36	Quantitative Analysis of MicroRNAs in Vaccinia virus Infection Reveals Diversity in Their Susceptibility to Modification and Suppression. PLoS ONE, 2015, 10, e0131787.	1.1	6

Ан Виск

#	Article	IF	CITATIONS
37	Parasite-Derived MicroRNAs in Host Serum As Novel Biomarkers of Helminth Infection. PLoS Neglected Tropical Diseases, 2014, 8, e2701.	1.3	143
38	Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nature Communications, 2014, 5, 5488.	5.8	640
39	Regulation of microRNA biogenesis and turnover by animals and their viruses. Cellular and Molecular Life Sciences, 2013, 70, 3525-3544.	2.4	76
40	Functional diversification of Argonautes in nematodes: an expanding universe. Biochemical Society Transactions, 2013, 41, 881-886.	1.6	47
41	Extracellular small RNAs: what, where, why?. Biochemical Society Transactions, 2012, 40, 886-890.	1.6	77
42	Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 279-284.	3.3	129
43	Induction of IL-4Rα–dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4–driven murine macrophage proliferation in vivo. Blood, 2012, 120, 2307-2316.	0.6	162
44	Host gene targets for novel influenza therapies elucidated by highâ€ŧhroughput RNA interference screens. FASEB Journal, 2012, 26, 1372-1386.	0.2	52
45	Combined agonist–antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13830-13835.	3.3	96
46	Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. Rna, 2010, 16, 307-315.	1.6	134
47	The evolution of RNAi as a defence against viruses and transposable elements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 99-115.	1.8	423
48	A DNA nanoswitch incorporating the fluorescent base analogue 2-aminopurine detects single nucleotide mismatches in unlabelled targets. Analyst, The, 2009, 134, 1873.	1.7	3
49	Electrochemical control of a DNA Holliday Junction nanoswitch by Mg2+ ions. Biosensors and Bioelectronics, 2008, 24, 422-428.	5.3	14
50	Discrete Clusters of Virus-Encoded MicroRNAs Are Associated with Complementary Strands of the Genome and the 7.2-Kilobase Stable Intron in Murine Cytomegalovirus. Journal of Virology, 2007, 81, 13761-13770.	1.5	81
51	DNA Nanoswitch as a Biosensor. Analytical Chemistry, 2007, 79, 4724-4728.	3.2	22
52	Improved Silicon Nitride Surfaces for Next-Generation Microarrays. Langmuir, 2006, 22, 11400-11404.	1.6	9
53	The stability and characteristics of a DNA Holliday junction switch. Biophysical Chemistry, 2006, 124, 214-221.	1.5	9
54	Structural perspective on the activation of RNase P RNA by protein. Nature Structural and Molecular Biology, 2005, 12, 958-964.	3.6	73

#	Article	IF	CITATIONS
55	Protein activation of a ribozyme: the role of bacterial RNase P protein. EMBO Journal, 2005, 24, 3360-3368.	3.5	86