Philipp Metsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8447649/publications.pdf Version: 2024-02-01

DHILIDD METSCH

#	Article	IF	CITATIONS
1	Multiscale modeling and simulation of magneto-active elastomers based on experimental data. ChemistrySelect, 2023, 8, 1-31.	1.5	4
2	Automated constitutive modeling of isotropic hyperelasticity based on artificial neural networks. Computational Mechanics, 2022, 69, 213-232.	4.0	25
3	A macroscopic model for magnetoâ€active elastomers based on microscopic simulations. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000208.	0.2	0
4	Particle Interactions in Magnetoâ€Active Elastomers: Experiments and Simulations. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000277.	0.2	0
5	Benchmark for the Coupled Magneto-Mechanical Boundary Value Problem in Magneto-Active Elastomers. Materials, 2021, 14, 2380.	2.9	1
6	Magneto-Mechanical Coupling in Magneto-Active Elastomers. Materials, 2021, 14, 434.	2.9	16
7	Thermodynamically consistent constitutive modeling of isotropic hyperelasticity based on artificial neural networks. Proceedings in Applied Mathematics and Mechanics, 2021, 21, .	0.2	3
8	A macroscopic model for magnetorheological elastomers based on microscopic simulations. International Journal of Solids and Structures, 2020, 193-194, 200-212.	2.7	33
9	Two- and three-dimensional modeling approaches in magneto-mechanics: a quantitative comparison. Archive of Applied Mechanics, 2019, 89, 47-62.	2.2	26
10	Development of a Macroâ€Model for Magnetorheological Elastomers based on Microscopic Simulations. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900288.	0.2	2
11	A quantitative comparison of two―and threeâ€dimensional modeling approaches for magnetorheological elastomers. Proceedings in Applied Mathematics and Mechanics, 2018, 18, e201800179.	0.2	2
12	Modeling and Simulation of Hysteresis Effects in Magnetorheological Elastomers. Proceedings in Applied Mathematics and Mechanics, 2018, 18, e201800319.	0.2	3
13	Theoretical models for magneto-sensitive elastomers: A comparison between continuum and dipole approaches. Physical Review E, 2017, 95, 042501.	2.1	46
14	Modeling of magnetic hystereses in soft MREs filled with NdFeB particles. Smart Materials and Structures, 2017, 26, 105019.	3.5	56
15	Microscale Modeling and Simulation of Magnetorheological Elastomers. Proceedings in Applied Mathematics and Mechanics, 2017, 17, 27-30.	0.2	2
16	Modeling and simulation of magnetorheological elastomers: A comparison of continuum and dipole approaches. Proceedings in Applied Mathematics and Mechanics, 2017, 17, 527-528.	0.2	1
17	A numerical study on magnetostrictive phenomena in magnetorheological elastomers. Computational Materials Science, 2016, 124, 364-374.	3.0	105
18	Microscale modeling and simulation of magnetorheological elastomers at finite strains: A study on the influence of mechanical preloads. International Journal of Solids and Structures, 2016, 102-103, 286-296.	2.7	55

#	Article	IF	CITATIONS
19	Isogeometric analysis of the Cahn–Hilliard equation – a convergence study. Journal of Computational Physics, 2016, 305, 360-371.	3.8	48