

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8447603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial Modulation for Terahertz Communication Systems With Hardware Impairments. IEEE Transactions on Vehicular Technology, 2020, 69, 4553-4557.	6.3	21
2	Secure Single-Input-Multiple-Output Media-Based Modulation. IEEE Transactions on Vehicular Technology, 2020, 69, 4105-4117.	6.3	11
3	Novel Index Modulation Techniques: A Survey. IEEE Communications Surveys and Tutorials, 2019, 21, 315-348.	39.4	229
4	Hartley-Domain DD-FTN Algorithm for ACO-SCFDM in Optical-Wireless Communications. IEEE Photonics Journal, 2019, 11, 1-9.	2.0	1
5	Sub-Channel Allocation for Device-to-Device Underlaying Full-Duplex mmWave Small Cells Using Coalition Formation Games. IEEE Transactions on Vehicular Technology, 2019, 68, 11915-11927.	6.3	12
6	Interference-Free LED Allocation for Visible Light Communications With Fisheye Lens. Journal of Lightwave Technology, 2018, 36, 626-636.	4.6	6
7	Low-PAPR Layered/Enhanced ACO-SCFDM for Optical-Wireless Communications. IEEE Photonics Technology Letters, 2018, 30, 165-168.	2.5	38
8	Joint User Association and Power Allocation for Cell-Free Visible Light Communication Networks. IEEE Journal on Selected Areas in Communications, 2018, 36, 136-148.	14.0	61
9	Non-Orthogonal Multiple Access: A Unified Perspective. IEEE Wireless Communications, 2018, 25, 10-16.	9.0	63
10	Secrecy Analysis of Generalized Space-Shift Keying Aided Visible Light Communication. IEEE Access, 2018, 6, 18310-18324.	4.2	24
11	Faster-Than-Nyquist Non-Orthogonal Frequency-Division Multiplexing for Visible Light Communications. IEEE Access, 2018, 6, 17933-17941.	4.2	15
12	Optical Jamming Enhances the Secrecy Performance of the Generalized Space-Shift-Keying-Aided Visible-Light Downlink. IEEE Transactions on Communications, 2018, 66, 4087-4102.	7.8	38
13	Dynamic Throughput Maximization for the User-Centric Visible Light Downlink in the Face of Practical Considerations. IEEE Transactions on Wireless Communications, 2018, 17, 5001-5015.	9.2	11
14	Asymmetrically Clipped Absolute Value Optical OFDM for Intensity-Modulated Direct-Detection Systems. Journal of Lightwave Technology, 2017, 35, 3680-3691.	4.6	33
15	Generalized Dual-Mode Index Modulation Aided OFDM. IEEE Communications Letters, 2017, 21, 761-764.	4.1	99
16	Optical OFDM for visible light communications. , 2017, , .		31
17	Interference-free LED allocation for the fisheye lens based visible light communications. , 2017, , .		3
18	Capacity limit for faster-than-Nyquist non-orthogonal frequency-division multiplexing signaling. Scientific Reports, 2017, 7, 3380.	3.3	24

QI WANG

#	Article	IF	CITATIONS
19	Dual-Mode Index Modulation Aided OFDM. IEEE Access, 2017, 5, 50-60.	4.2	231
20	Leakage-based precoding for MU-MIMO VLC systems under optical power constraint. Optics Communications, 2017, 382, 348-353.	2.1	9
21	Zero-Padded Orthogonal Frequency Division Multiplexing with Index Modulation Using Multiple Constellation Alphabets. IEEE Access, 2017, 5, 21168-21178.	4.2	17
22	Zero-Padded Tri-Mode Index Modulation Aided OFDM. , 2017, , .		8
23	Scalable Bandwidth Allocation Based on Domain Attributes: Towards a DDoS-Resistant Data Center. , 2017, , .		3
24	Performance Analysis of Layered ACO-OFDM. IEEE Access, 2017, 5, 18366-18381.	4.2	48
25	Receiver design for SPAD-based VLC systems under Poisson–Gaussian mixed noise model. Optics Express, 2017, 25, 799.	3.4	21
26	High speed OFDM-CDMA optical access network. Optics Letters, 2016, 41, 1809.	3.3	6
27	BICM-ID scheme for clipped DCO-OFDM in visible light communications. Optics Express, 2016, 24, 4573.	3.4	15
28	Multi-User Sum-Rate Optimization for Visible Light Communications With Lighting Constraints. Journal of Lightwave Technology, 2016, 34, 3943-3952.	4.6	44
29	Collusion-resilient broadcast encryption based on dual-evolving one-way function trees. Security and Communication Networks, 2016, 9, 3633-3645.	1.5	2
30	Construction of Multiple-Rate QC-LDPC Codes Using Hierarchical Row-Splitting. IEEE Communications Letters, 2016, 20, 1068-1071.	4.1	5
31	Dimmable Visible Light Communications Based on Multilayer ACO-OFDM. IEEE Photonics Journal, 2016, 8, 1-11.	2.0	36
32	Ellipse-based DCO-OFDM for visible light communications. Optics Communications, 2016, 360, 1-6.	2.1	12
33	Adaptive Hybrid Precoding for Multiuser Massive MIMO. IEEE Communications Letters, 2016, 20, 776-779.	4.1	69
34	Improved Receiver Design for Layered ACO-OFDM in Optical Wireless Communications. IEEE Photonics Technology Letters, 2016, 28, 319-322.	2.5	32
35	Near-Optimal Low-Complexity Sequence Detection for Clipped DCO-OFDM. IEEE Photonics Technology Letters, 2016, 28, 233-236.	2.5	23
36	A Tight Upper Bound on Channel Capacity for Visible Light Communications. IEEE Communications Letters, 2016, 20, 97-100.	4.1	46

QI WANG

#	Article	IF	CITATIONS
37	Modified PTS-based PAPR reduction for ACO-OFDM in visible light communications. Science China Information Sciences, 2015, 58, 1-3.	4.3	2
38	Multiuser MIMO-OFDM for Visible Light Communications. IEEE Photonics Journal, 2015, 7, 1-11.	2.0	97
39	Asymmetrical Hybrid Optical OFDM for Visible Light Communications With Dimming Control. IEEE Photonics Technology Letters, 2015, 27, 974-977.	2.5	104
40	First demonstration of OFDM ECDMA for low cost optical access networks. Optics Letters, 2015, 40, 2353.	3.3	7
41	Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission. Optics Express, 2015, 23, 12382.	3.4	184
42	An optimal scaling scheme for DCO-OFDM based visible light communications. Optics Communications, 2015, 356, 136-140.	2.1	21
43	A reduced-complexity demapping algorithm for BICM-ID systems. IEEE Transactions on Vehicular Technology, 2015, 64, 4350-4356.	6.3	9
44	Iterative Receiver for Hybrid Asymmetrically Clipped Optical OFDM. Journal of Lightwave Technology, 2014, 32, 4471-4477.	4.6	29
45	An adaptive scaling and biasing scheme for OFDM-based visible light communication systems. Optics Express, 2014, 22, 12707.	3.4	44
46	A Universal Low-Complexity Symbol-to-Bit Soft Demapper. IEEE Transactions on Vehicular Technology, 2014, 63, 119-130.	6.3	55
47	Enhancing the decoding performance of optical wireless communication systems using receiver-side predistortion. Optics Express, 2013, 21, 30295.	3.4	18