
Yaichiro Kotake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8447471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	1â€Benzylâ€1,2,3,4â€Tetrahydroisoquinoline as a Parkinsonismâ€Inducing Agent: A Novel Endogenous Amine in Mouse Brain and Parkinsonian CSF. Journal of Neurochemistry, 1995, 65, 2633-2638.	3.9	140
3	Prediction of In Vivo Hepatic Clearance and Half-Life of Drug Candidates in Human Using Chimeric Mice with Humanized Liver. Drug Metabolism and Disposition, 2012, 40, 322-328.	3.3	70
4	Concentration Dependence of the Mechanisms of Tributyltin-Induced Apoptosis. Toxicological Sciences, 2007, 97, 438-447.	3.1	67
5	Molecular Mechanisms of Environmental Organotin Toxicity in Mammals. Biological and Pharmaceutical Bulletin, 2012, 35, 1876-1880.	1.4	67
6	Chronic administration of 1-benzyl-1,2,3,4-tetrahydroisoquinoline, an endogenous amine in the brain, induces parkinsonism in a primate. Neuroscience Letters, 1996, 217, 69-71.	2.1	64
7	Regional distribution of parkinsonism-preventing endogenous tetrahydroisoquinoline derivatives and an endogenous parkinsonism-preventing substance-synthesizing enzyme in monkey brain. Neuroscience Letters, 1999, 276, 68-70.	2.1	58
8	Glutamate Excitotoxicity Is Involved in Cell Death Caused by Tributyltin in Cultured Rat Cortical Neurons. Toxicological Sciences, 2006, 89, 235-242.	3.1	57
9	Activation of AMP-activated protein kinase by tributyltin induces neuronal cell death. Toxicology and Applied Pharmacology, 2008, 230, 358-363.	2.8	44
10	Predictability of plasma concentration–time curves in humans using single-species allometric scaling of chimeric mice with humanized liver. Xenobiotica, 2015, 45, 605-614.	1.1	43
11	Tributyltin-induced endoplasmic reticulum stress and its Ca2+-mediated mechanism. Toxicology and Applied Pharmacology, 2013, 272, 137-146.	2.8	40
12	Tetrahydropapaveroline and its derivatives inhibit dopamine uptake through dopamine transporter expressed in HEK293 cells. Neuroscience Research, 1998, 30, 87-90.	1.9	34
13	Long-term exposure to endogenous levels of tributyltin decreases GluR2 expression and increases neuronal vulnerability to glutamate. Toxicology and Applied Pharmacology, 2009, 240, 292-298.	2.8	34
14	Neuroprotective effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline on cultured rat mesencephalic neurons in the presence or absence of various neurotoxins. Brain Research, 2005, 1033, 143-150.	2.2	33
15	Involvement of autophagy via mammalian target of rapamycin (mTOR) inhibition in tributyltin-induced neuronal cell death. Journal of Toxicological Sciences, 2010, 35, 245-251.	1.5	30
16	NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells. Scientific Reports, 2015, 4, 5952.	3.3	30
17	Mild <scp>MPP</scp> ⁺ exposure impairs autophagic degradation through a novel lysosomal acidityâ€independent mechanism. Journal of Neurochemistry, 2016, 139, 294-308.	3.9	28
18	Deprenyl decreases an endogenous parkinsonism-inducing compound, 1-benzyl-1,2,3,4-tetrahydroisoquinoline in mice: in vivo and in vitro studies. Brain Research, 1998, 787, 341-343.	2.2	27

YAICHIRO KOTAKE

#	Article	IF	CITATIONS
19	Endogenous neurotoxic dopamine derivative covalently binds to Parkinson's diseaseâ€associated ubiquitin Câ€terminal hydrolase L1 and alters its structure and function. Journal of Neurochemistry, 2014, 130, 826-838.	3.9	27
20	Detection and determination of reticuline and N-methylcoculaurine in the Annonaceae family using liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 806, 75-78.	2.3	26
21	Tributyltin-induced cell death is mediated by calpain in PC12 cells. NeuroToxicology, 2006, 27, 587-593.	3.0	26
22	Parkinsonism-Preventing Activity of 1-Methyl-1,2,3,4-tetrahydroisoquinoline Derivatives in C57BL Mouse in Vivo. Biological and Pharmaceutical Bulletin, 2006, 29, 1401-1403.	1.4	24
23	1â€Benzylâ€1,2,3,4â€tetrahydroisoquinoline binds with tubulin β, a substrate of parkin, and reduces its polyubiquitination. Journal of Neurochemistry, 2010, 114, 1291-1301.	3.9	23
24	Involvement of decreased glutamate receptor subunit GluR2 expression in lead-induced neuronal cell death. Journal of Toxicological Sciences, 2013, 38, 513-521.	1.5	21
25	Inhibitory effects of drugs on the metabolic activity of mouse and human aldehyde oxidases and influence on drug–drug interactions. Biochemical Pharmacology, 2018, 154, 28-38.	4.4	21
26	AMP-activated protein kinase-mediated glucose transport as a novel target of tributyltin in human embryonic carcinoma cells. Metallomics, 2013, 5, 484.	2.4	19
27	Perfluorooctane sulfonate induces neuronal vulnerability by decreasing GluR2 expression. Archives of Toxicology, 2017, 91, 885-895.	4.2	19
28	Tributyltin induces mitochondrial fission through NAD-IDH dependent mitofusin degradation in human embryonic carcinoma cells. Metallomics, 2015, 7, 1240-1246.	2.4	18
29	Methoxychlor and fenvalerate induce neuronal death by reducing GluR2 expression. Journal of Toxicological Sciences, 2016, 41, 255-264.	1.5	18
30	Cytotoxicity of 17 tetrahydroisoquinoline derivatives in SH-SY5Y human neuroblastoma cells is related to mitochondrial NADH–ubiquinone oxidoreductase inhibition. NeuroToxicology, 2007, 28, 27-32.	3.0	17
31	Assessment of amiodarone-induced phospholipidosis in chimeric mice with a humanized liver. Journal of Toxicological Sciences, 2017, 42, 589-596.	1.5	15
32	Dopamine Transporter and Catechol-O-methyltransferase Activities Are Required for the Toxicity of 1-(3â€~,4â€~-Dihydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline. Chemical Research in Toxicology, 2000, 13, 1294-1301.	3.3	14
33	Lead-Induced ERK Activation Is Mediated by GluR2 Non-containing AMPA Receptor in Cortical Neurons. Biological and Pharmaceutical Bulletin, 2017, 40, 303-309.	1.4	14
34	Inhibition of dopamine receptors by endogenous amines: binding to striatal receptors and pharmacological effects on locomotor activity. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1669-1671.	2.2	13
35	Acetaminophen induces accumulation of functional rat CYP3A via polyubiquitination dysfunction. Scientific Reports, 2016, 6, 21373.	3.3	12
36	Inhibition of cytochrome P450 3A protein degradation and subsequent increase in enzymatic activity through p38 MAPK activation by acetaminophen and salicylate derivatives. Biochemical and Biophysical Research Communications, 2019, 509, 287-293.	2.1	11

YAICHIRO KOTAKE

#	Article	IF	CITATIONS
37	Fluorometric assessment of acetaminophen-induced toxicity in rat hepatocyte spheroids seeded on micro-space cell culture plates. Toxicology in Vitro, 2014, 28, 1176-1182.	2.4	10
38	Tributyltin induces epigenetic changes and decreases the expression of nuclear respiratory factor-1. Metallomics, 2018, 10, 337-345.	2.4	10
39	Mild MPP+ exposure-induced glucose starvation enhances autophagosome synthesis and impairs its degradation. Scientific Reports, 2017, 7, 46668.	3.3	9
40	Determination method of 1-methyl-1,2,3,4-tetrahydroisoquinoline, an endogenous parkinsonism-preventing substance, by radioimmunoassay. Life Sciences, 2002, 70, 2871-2883.	4.3	8
41	Development of a simple measurement method for GluR2 protein expression as an index of neuronal vulnerability. Toxicology Reports, 2015, 2, 450-460.	3.3	8
42	Protein extracts from cultured cells contain nonspecific serum albumin. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1164-1167.	1.3	8
43	Changes in Bile Acid Concentrations after Administration of Ketoconazole or Rifampicin to Chimeric Mice with Humanized Liver. Biological and Pharmaceutical Bulletin, 2019, 42, 1366-1375.	1.4	8
44	Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition. International Journal of Molecular Sciences, 2017, 18, 1754.	4.1	7
45	Carbofuran causes neuronal vulnerability to glutamate by decreasing GluA2 protein levels in rat primary cortical neurons. Archives of Toxicology, 2018, 92, 401-409.	4.2	7
46	Treatment with Histone Deacetylase Inhibitor Attenuates Peripheral Inflammation-Induced Cognitive Dysfunction and Microglial Activation: The Effect of SAHA as a Peripheral HDAC Inhibitor. Neurochemical Research, 2021, 46, 2285-2296.	3.3	7
47	Detection of a novel neurotoxic metabolite of Parkinson's disease-related neurotoxin, 1-benzyl-1,2,3,4- tetrahydroisoquinoline. Journal of Toxicological Sciences, 2014, 39, 749-754.	1.5	6
48	Coordinated cytochrome P450 expression in mouse liver and intestine under different dietary conditions during liver regeneration after partial hepatectomy. Toxicology and Applied Pharmacology, 2019, 370, 133-144.	2.8	6
49	Acetaminophen analog N -acetyl- m -aminophenol, but not its reactive metabolite, N -acetyl- p -benzoquinone imine induces CYP3A activity via inhibition of protein degradation. Biochemical and Biophysical Research Communications, 2017, 486, 639-644.	2.1	5
50	Prenatal Exposure to Tributyltin Decreases GluR2 Expression in the Mouse Brain. Biological and Pharmaceutical Bulletin, 2017, 40, 1121-1124.	1.4	5
51	Neurotoxicity Induced by Environmental Low-molecular-weight Substances. Journal of Health Science, 2007, 53, 639-643.	0.9	4
52	Amiodarone bioconcentration and suppression of metamorphosis in Xenopus. Aquatic Toxicology, 2020, 228, 105623.	4.0	4
53	Prediction of human pharmacokinetics for lowâ€clearance compounds using pharmacokinetic data from chimeric mice with humanized livers. Clinical and Translational Science, 2022, 15, 79-91.	3.1	4
54	CYP1A2 Downregulation by Obeticholic Acid: Usefulness as a Positive Control for the InÂVitro Evaluation of Drug-Drug Interactions. Journal of Pharmaceutical Sciences, 2019, 108, 3903-3910.	3.3	3

YAICHIRO KOTAKE

#	Article	IF	CITATIONS
55	MiT/TFE family members suppress L-leucyl–L-leucine methyl ester-induced cell death. Journal of Toxicological Sciences, 2021, 46, 143-156.	1.5	3
56	Involvement of aldehyde oxidase in the metabolism of aromatic and aliphatic aldehyde-odorants in the mouse olfactory epithelium. Archives of Biochemistry and Biophysics, 2022, 715, 109099.	3.0	3
57	Tributyltin inhibits autophagy by decreasing lysosomal acidity in SH-SY5Y cells. Biochemical and Biophysical Research Communications, 2022, 592, 31-37.	2.1	3
58	Assessment of metabolic activation of felbamate in chimeric mice with humanized liver in combination with <i>in vitro</i> metabolic assays. Journal of Toxicological Sciences, 2022, 47, 277-288.	1.5	3
59	Developmental changes in drug-metabolizing enzyme expression during metamorphosis of <i>Xenopus tropicalis </i> . Journal of Toxicological Sciences, 2017, 42, 605-613.	1.5	2
60	Changes in Bile Acid Concentrations in Chimeric Mice Transplanted with Different Replacement Indexes of Human Hepatocytes. BPB Reports, 2019, 2, 29-34.	0.3	2
61	Comparison of the Components of Three Types of Miso (Fermented Soybean Paste) by ¹ H NMR Metabolomic Analysis. BPB Reports, 2021, 4, 148-154.	0.3	1
62	Triphenyltin inhibits GA-binding protein α nuclear translocation. Fundamental Toxicological Sciences, 2020, 7, 33-40.	0.6	1
63	Tetrahydroisoquinoline Derivatives as Possible Parkinson′s Disease-Inducing Substances. ChemInform, 2003, 34, no.	0.0	0
64	Trehalose decreases mRNA and protein expressions of c-Jun and JunB in human cervical cancer HeLa cells. Journal of Biochemistry, 0, , .	1.7	0