Yekaterina Y Zaytseva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8445873/publications.pdf Version: 2024-02-01

21 papers	1,261 citations	471509 17 h-index	713466 21 g-index
21	21	21	2018
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death and Disease, 2017, 8, e2593-e2593.	6.3	206
2	Inhibition of Fatty Acid Synthase Attenuates CD44-Associated Signaling and Reduces Metastasis in Colorectal Cancer. Cancer Research, 2012, 72, 1504-1517.	0.9	162
3	Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer. Cell Death and Disease, 2018, 9, 265.	6.3	145
4	Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration. Oncotarget, 2015, 6, 18891-18904.	1.8	97
5	Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. Oncotarget, 2018, 9, 24787-24800.	1.8	84
6	Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer. Carcinogenesis, 2014, 35, 1341-1351.	2.8	80
7	Inhibition of Fatty Acid Synthase Upregulates Expression of CD36 to Sustain Proliferation of Colorectal Cancer Cells. Frontiers in Oncology, 2020, 10, 1185.	2.8	56
8	Spermine synthase and MYC cooperate to maintain colorectal cancer cell survival by repressing Bim expression. Nature Communications, 2020, 11, 3243.	12.8	55
9	Colorectal cancer lung metastasis treatment with polymer–drug nanoparticles. Journal of Controlled Release, 2018, 275, 85-91.	9.9	53
10	<i>De Novo</i> Fatty Acid Synthesis-Driven Sphingolipid Metabolism Promotes Metastatic Potential of Colorectal Cancer. Molecular Cancer Research, 2019, 17, 140-152.	3.4	53
11	The PPARgamma antagonist T0070907 suppresses breast cancer cell proliferation and motility via both PPARgamma-dependent and -independent mechanisms. Anticancer Research, 2011, 31, 813-23.	1.1	43
12	Upregulation of CPT1A is essential for the tumor-promoting effect of adipocytes in colon cancer. Cell Death and Disease, 2020, 11, 736.	6.3	41
13	Down-regulation of PPARgamma1 suppresses cell growth and induces apoptosis in MCF-7 breast cancer cells. Molecular Cancer, 2008, 7, 90.	19.2	36
14	N-glycosylation-defective splice variants of neuropilin-1 promote metastasis by activating endosomal signals. Nature Communications, 2019, 10, 3708.	12.8	34
15	Upregulation of CD36, a Fatty Acid Translocase, Promotes Colorectal Cancer Metastasis by Increasing MMP28 and Decreasing E-Cadherin Expression. Cancers, 2022, 14, 252.	3.7	26
16	Lipid Metabolism as a Targetable Metabolic Vulnerability in Colorectal Cancer. Cancers, 2021, 13, 301.	3.7	24
17	Activation of c-Met and Upregulation of CD44 Expression Are Associated with the Metastatic Phenotype in the Colorectal Cancer Liver Metastasis Model. PLoS ONE, 2014, 9, e97432.	2.5	23
18	Erbin Suppresses KSR1-Mediated RAS/RAF Signaling and Tumorigenesis in Colorectal Cancer. Cancer Research. 2018. 78. 4839-4852.	0.9	23

#	Article	IF	CITATIONS
19	Tissue-Specific Downregulation of Fatty Acid Synthase Suppresses Intestinal Adenoma Formation via Coordinated Reprograming of Transcriptome and Metabolism in the Mouse Model of Apc-Driven Colorectal Cancer. International Journal of Molecular Sciences, 2022, 23, 6510.	4.1	9
20	Diaminobutoxy-substituted Isoflavonoid (DBI-1) Enhances the Therapeutic Efficacy of GLUT1 Inhibitor BAY-876 by Modulating Metabolic Pathways in Colon Cancer Cells. Molecular Cancer Therapeutics, 2022, 21, 740-750.	4.1	6
21	Novel chemotherapeutic agent, FND-4b, activates AMPK and inhibits colorectal cancer cell proliferation. PLoS ONE, 2019, 14, e0224253.	2.5	5