## Lakshmanan Rajendran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/844548/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Theoretical and Numerical Analysis of Nonlinear Processes in Amperometric Enzyme Electrodes with<br>Cyclic Substrate Conversion. Electrochem, 2022, 3, 70-88.                                                                                 | 3.3 | 3         |
| 2  | Transport and kinetics in an electroenzymatic process incurred in PPO-based rotating disk bioelectrodes. Journal of Electroanalytical Chemistry, 2022, , 116293.                                                                              | 3.8 | 1         |
| 3  | Reaction-diffusion in a packed-bed reactors: Enzymatic isomerization with Michaelis-Menten Kinetics.<br>Journal of Electroanalytical Chemistry, 2022, 910, 116184.                                                                            | 3.8 | 9         |
| 4  | Amperometric biosensors and coupled enzyme nonlinear reactions processes: A complete theoretical and numerical approach. Electrochimica Acta, 2022, 415, 140236.                                                                              | 5.2 | 9         |
| 5  | Semi-analytical expressions for the concentrations and effectiveness factor for the three general catalyst shapes. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 1739-1754.                                                         | 1.7 | 8         |
| 6  | Cyclic voltammetric response of homogeneous catalysis of electrochemical reactions: Part 2. A<br>theoretical and numerical approach for EC scheme. Journal of Electroanalytical Chemistry, 2022, 918,<br>116453.                              | 3.8 | 4         |
| 7  | Cyclic voltammetric response of homogeneous catalysis of electrochemical reactions: Part 1. A<br>theoretical and numerical approach for EE'C scheme. Journal of Electroanalytical Chemistry, 2022,<br>918, 116429.                            | 3.8 | 7         |
| 8  | Modelling of Biotrickling Filters for Treatment of NOx Analytical Expressions for the NOx<br>Concentration in Both Gas and Biofilm Phases. Electrochem, 2022, 3, 361-378.                                                                     | 3.3 | 1         |
| 9  | A kinetic model for amperometric immobilized enzymes at planar, cylindrical and spherical electrodes:<br>The Akbari-Ganji method. Journal of Electroanalytical Chemistry, 2021, 880, 114921.                                                  | 3.8 | 36        |
| 10 | Theoretical Analysis of Single-Stage and Multi-Stage Monod Model of Landfill Degradation Through<br>Mathematical Modelling. Current Biochemical Engineering, 2021, 7, 48-62.                                                                  | 1.3 | 0         |
| 11 | Solving nonlinear reaction–diffusion problemÂin electrostatic interaction with reaction-generated pH change on the kinetics of immobilized enzyme systems using Taylor series method. Journal of Mathematical Chemistry, 2021, 59, 1332-1347. | 1.5 | 28        |
| 12 | Steady-state current in product inhibition kinetics in an amperometric biosensor: Adomian<br>decomposition and Taylor series method. Journal of Electroanalytical Chemistry, 2021, 886, 115103.                                               | 3.8 | 15        |
| 13 | Amperometric biosensors in an uncompetitive inhibition processes: a complete theoretical and numerical analysis. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 655-668.                                                             | 1.7 | 19        |
| 14 | Sensitivity and resistance of amperometric biosensors in substrate inhibition processes. Journal of Electroanalytical Chemistry, 2021, 895, 115527.                                                                                           | 3.8 | 14        |
| 15 | Transient current, sensitivity and resistance of biosensors acting in a trigger mode: Theoretical study. Journal of Electroanalytical Chemistry, 2021, 895, 115421.                                                                           | 3.8 | 10        |
| 16 | Mathematical modeling of immobilized enzyme in porous planar, cylindrical, and spherical particle: a<br>reliable semi-analytical approach. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 641-651.                                   | 1.7 | 20        |
| 17 | Transient chronoamperometric current at rotating disc electrode for second-order ECE reactions.<br>Journal of Electroanalytical Chemistry, 2021, 902, 115775.                                                                                 | 3.8 | 14        |
| 18 | Approximate Analytical Solutions of Biofilm Reactor Problem in Applied Biotechnology. Theoretical Foundations of Chemical Engineering, 2021, 55, 851-861.                                                                                     | 0.7 | 7         |

Lakshmanan Rajendran

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Theoretical Analysis of Voltammetry at a Rotating Disk Electrode in the Absence of Supporting<br>Electrolyte. Journal of Physical Chemistry B, 2020, 124, 443-450.                               | 2.6 | 21        |
| 20 | Electric potential and surface oxygen ion density for planar, spherical and cylindrical metal oxide grains. Sensors and Actuators B: Chemical, 2020, 321, 128576.                                | 7.8 | 18        |
| 21 | Approximate analytical solution of nonlinear equations in cubic auto-catalytic reaction-diffusion process. AIP Conference Proceedings, 2020, , .                                                 | 0.4 | 2         |
| 22 | Mathematical models for ECE reactions at rotating disk electrodes using homotopy analysis method.<br>AIP Conference Proceedings, 2020, , .                                                       | 0.4 | 0         |
| 23 | Mathematical modeling of hydrogen evolution at a rotating disk electrode. AIP Conference<br>Proceedings, 2020, , .                                                                               | 0.4 | 2         |
| 24 | Taylor's series method for solving the nonlinear reaction-diffusion equation in the electroactive polymer film. Chemical Physics Letters, 2020, 754, 137573.                                     | 2.6 | 34        |
| 25 | New analytical method for solving nonlinear equation in rotating disk electrodes for second-order ECE reactions. Journal of Electroanalytical Chemistry, 2020, 869, 114106.                      | 3.8 | 31        |
| 26 | Steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by residual method. Journal of Mathematical Chemistry, 2020, 58, 1230-1246.                          | 1.5 | 25        |
| 27 | Analysis of the steady-state behavior of pseudo-first-order EC-catalytic mechanism at a rotating disk electrode. Electrochimica Acta, 2020, 345, 136175.                                         | 5.2 | 21        |
| 28 | Analytical study and parameter-sensitivity analysis of catalytic current at a rotating disk electrode.<br>Journal of Physics Communications, 2020, 4, 105017.                                    | 1.2 | 4         |
| 29 | The theory of steady state current for chronoamperometric and cyclic voltammetry on rotating disk electrodes for EC' and ECE reactions. Electrochimica Acta, 2019, 313, 441-456.                 | 5.2 | 23        |
| 30 | Modelling of reaction-diffusion process at carbon nanotube – Redox enzyme composite modified electrode biosensor. Chemical Physics Letters, 2019, 715, 20-28.                                    | 2.6 | 8         |
| 31 | Application of modified wavelet and homotopy perturbation methods to nonlinear oscillation problems. Applied Mathematics and Nonlinear Sciences, 2019, 4, 351-364.                               | 1.6 | 53        |
| 32 | Theoretical analysis of concentration of lactose hydrolysis in a packed bed reactor using immobilized β-galactosidase. Ain Shams Engineering Journal, 2018, 9, 1507-1512.                        | 6.1 | 2         |
| 33 | Unprecedented homotopy perturbation method for solving nonlinear equations in the enzymatic reaction of glucose in a spherical matrix. Bioprocess and Biosystems Engineering, 2018, 41, 281-294. | 3.4 | 8         |
| 34 | Kinetic Mechanism for Modelling of Electrochemical Mediatedenzyme Reactions and Determination of Enzyme Kinetics Parameters. Russian Journal of Electrochemistry, 2018, 54, 783-795.             | 0.9 | 0         |
| 35 | Transient Current for a Rotating Disk Electrodes Produced by a Potential Step. Russian Journal of Electrochemistry, 2018, 54, 1067-1072.                                                         | 0.9 | 8         |
| 36 | A New Approach of Solving the Nonlinear Equations in Biofiltration of Methane in a Closed Biofilter.<br>Journal of Analytical & Bioanalytical Techniques, 2018, 09, .                            | 0.6 | 0         |

| #  | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mathematical modeling of nonlinear reaction–diffusion processes in enzymatic biofuel cells. Current<br>Opinion in Electrochemistry, 2017, 1, 121-132.                                                                                                                                          | 4.8 | 22        |
| 38 | The analysis and fabrication of a novel tin-nickel mixed salt electrolytic coloured processing and the performance of coloured films for Al-12.7Si-0.7Mg alloy in acidic and alkali corrosive environments. International Journal of Precision Engineering and Manufacturing, 2017, 18, 93-98. | 2.2 | 3         |
| 39 | Theoretical treatment of diffusion and kinetics of osmium redox polymer mediated glucose oxidase<br>enzyme electrodes: Analytical expression of current density for varying potential. Electrochimica<br>Acta, 2017, 230, 89-97.                                                               | 5.2 | 13        |
| 40 | Non-linear Differential Equations and Rotating Disc Electrodes: Padé approximationTechnique.<br>Electrochimica Acta, 2017, 243, 1-6.                                                                                                                                                           | 5.2 | 14        |
| 41 | Part-2: Analytical Expressions of Concentrations of Glucose, Oxygen, and Gluconic Acid in a<br>Composite Membrane for Closed-Loop Insulin Delivery for the Non-steady State Conditions. Journal of<br>Membrane Biology, 2017, 250, 89-101.                                                     | 2.1 | 1         |
| 42 | Empirical and Analytical Correlation of the Reaction Kinetics Parameters of Cuttle Bone Powder<br>Immobilized Lipase Catalyzed Ethyl Ferulate Synthesis. Catalysis Letters, 2017, 147, 2232-2245.                                                                                              | 2.6 | 6         |
| 43 | Analytical solution of the convection-diffusion equation for uniformly accessible rotating disk electrodes via the homotopy perturbation method. Journal of Electroanalytical Chemistry, 2017, 799, 175-180.                                                                                   | 3.8 | 19        |
| 44 | Mathematical modeling and analysis of the molar concentrations of ethanol, acetaldehyde and ethyl acetate inside the catalyst particle. Kinetics and Catalysis, 2016, 57, 125-134.                                                                                                             | 1.0 | 6         |
| 45 | A new mathematical modelling using Homotopyperturbation method to solve nonlinear equations in enzymatic glucose fuel cells. Chemical Physics Letters, 2016, 662, 317-326.                                                                                                                     | 2.6 | 14        |
| 46 | Theoretical analysis of the enzyme reaction processes within the multiscale porous biocatalytic electrodes. Russian Journal of Electrochemistry, 2016, 52, 143-153.                                                                                                                            | 0.9 | 2         |
| 47 | Mathematical modeling of gas phase and biofilm phase biofilter performance. Egyptian Journal of Basic<br>and Applied Sciences, 2016, 3, 94-105.                                                                                                                                                | 0.6 | 10        |
| 48 | Hydrogen Production by a Photosynthetic Bacterium: Some Analytical Solutions. Chemical Engineering and Technology, 2015, 38, 1235-1242.                                                                                                                                                        | 1.5 | 4         |
| 49 | Mathematical analysis of an enzyme-entrapped conducting polymer modified electrode. Applied<br>Mathematical Modelling, 2015, 39, 7351-7363.                                                                                                                                                    | 4.2 | 9         |
| 50 | Current–potential response and concentration profiles of redox polymer-mediated enzyme catalysis<br>in biofuel cells – Estimation of Michaelis–Menten constants. Chemical Physics Letters, 2015, 621,<br>117-123.                                                                              | 2.6 | 14        |
| 51 | Approximate analytical solution for non-linear reaction diffusion equations in a mono-enzymatic<br>biosensor involving Michaelis–Menten kinetics. Journal of Electroanalytical Chemistry, 2015, 751,<br>119-127.                                                                               | 3.8 | 21        |
| 52 | Theoretical Analysis of Reaction and Diffusion Processes in a Biofuel Cell Electrode. Fuel Cells, 2015, 15, 523-536.                                                                                                                                                                           | 2.4 | 9         |
| 53 | Non-linear analysis of Haldane kinetic model in phenol degradation in batch operations. Kinetics and Catalysis, 2015, 56, 141-146.                                                                                                                                                             | 1.0 | 5         |
| 54 | Theoretical analysis through mathematical modeling of two-phase flow transport in an immobilized-cell photobioreactor. Chemical Physics Letters, 2015, 625, 193-201.                                                                                                                           | 2.6 | 5         |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Mathematical Theory of Diffusion and Reaction in Enzymes Immoblized Artificial Membrane. The<br>Theory of the Non-Steady State. Journal of Membrane Biology, 2015, 248, 1127-1135.                                             | 2.1 | 1         |
| 56 | Enzyme-Catalyzed Oxygen Reduction Reaction in Biofuel Cells: Analytical Expressions for<br>Chronoamperometric Current Densities. Journal of the Electrochemical Society, 2015, 162, H671-H680.                                     | 2.9 | 18        |
| 57 | Analytical expression of transient current-potential for redox enzymatic homogenous system.<br>Sensors and Actuators B: Chemical, 2015, 208, 128-136.                                                                              | 7.8 | 19        |
| 58 | Analytical expressions for the concentration of nitric oxide removal in the gas and biofilm phase in a<br>biotrickling filter. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2015,<br>18, 19-28. | 1.0 | 1         |
| 59 | A new mathematical model for effectiveness factors in biofilm under toxic conditions. AEJ -<br>Alexandria Engineering Journal, 2014, 53, 917-928.                                                                                  | 6.4 | 6         |
| 60 | Analytical Solution of Nonlinear Dynamics of a Self-Igniting Reaction-Diffusion System Using Modified<br>Adomian Decomposition Method. International Journal of Chemical Engineering, 2014, 2014, 1-8.                             | 2.4 | 0         |
| 61 | Analysis of Mathematical Modelling on Potentiometric Biosensors. , 2014, 2014, 1-11.                                                                                                                                               |     | 4         |
| 62 | Theoretical Analysis of an Amperometric Biosensor Based on Parallel Substrates Conversion. ISRN<br>Electrochemistry, 2014, 2014, 1-12.                                                                                             | 0.9 | 1         |
| 63 | Analytical model for Binding Refresh Request to reduce storage and communication overhead in MIPv6 network. International Journal of Network Management, 2014, 24, 402-414.                                                        | 2.2 | 0         |
| 64 | Analytical expression for concentration and sensitivity of a thin film semiconductor gas sensor. Ain<br>Shams Engineering Journal, 2014, 5, 885-893.                                                                               | 6.1 | 17        |
| 65 | Analytical expression of transient and steady-state catalytic current of mediated bioelectrocatalysis.<br>Electrochimica Acta, 2014, 147, 678-687.                                                                                 | 5.2 | 8         |
| 66 | Theoretical analysis of intrinsic reaction kinetics and the behavior of immobilized enzymes system for steady-state conditions. Biochemical Engineering Journal, 2014, 91, 129-139.                                                | 3.6 | 19        |
| 67 | Analytical Expressions of the Concentrations of Substrate, Biomass, and Ethanol for Solid‣tate<br>Fermentation in Biofuel Production. Energy Technology, 2014, 2, 574-578.                                                         | 3.8 | 2         |
| 68 | Mathematical Modeling of Multienzyme Biosensor System. International Journal of Computational<br>Mathematics, 2014, 2014, 1-15.                                                                                                    | 0.8 | 5         |
| 69 | Mathematical Model of Cell Growth for Biofuel Production under Synthetic Feedback. Natural Science, 2014, 06, 262-277.                                                                                                             | 0.4 | 0         |
| 70 | Analytical expression of the concentration of species and effectiveness factors in porous catalysts using the Adomian decomposition method. Kinetics and Catalysis, 2013, 54, 95-105.                                              | 1.0 | 9         |
| 71 | Mathematical Modeling of a Carrier-Mediated Transport Process in a Liquid Membrane. Journal of Membrane Biology, 2013, 246, 435-442.                                                                                               | 2.1 | 10        |
| 72 | Analytical Expressions for the Steady-State Concentrations of Glucose, Oxygen and Gluconic Acid in a<br>Composite Membrane for Closed-Loop Insulin Delivery. Journal of Membrane Biology, 2013, 246, 121-129.                      | 2.1 | 9         |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Theoretical Analysis of the Chemical Absorption of Carbon Dioxide using an Aqueous Elastic<br>Xanthanâ€Gum Solution Containing NaOH. Energy Technology, 2013, 1, 405-411.                                                                                    | 3.8 | Ο         |
| 74 | Analytical expressions for the concentrations of substrate, oxygen and mediator in an amperometric enzyme electrode. Applied Mathematical Modelling, 2013, 37, 5343-5358.                                                                                    | 4.2 | 4         |
| 75 | Approximate Analytical Expressions for the Steadyâ€State Concentration of Substrate and Cosubstrate over Amperometric Biosensors for Different Enzyme Kinetics. International Journal of Chemical Kinetics, 2013, 45, 322-336.                               | 1.6 | 6         |
| 76 | Reply to "Comments on analytical solution of amperometric enzymatic reactions based on Homotopy<br>perturbation method,―by Ji-Huan He, Lu-Feng Mo [Electrochim. Acta (2013)]. Electrochimica Acta, 2013,<br>102, 474-476.                                    | 5.2 | 33        |
| 77 | Analytical expression of concentrations of adsorbed CO molecules, O atoms and oxide oxygen.<br>Natural Science, 2013, 05, 326-332.                                                                                                                           | 0.4 | Ο         |
| 78 | Analytical Expressions for Steady-State Concentrations of Substrate and Oxidized and Reduced<br>Mediator in an Amperometric Biosensor. International Journal of Electrochemistry, 2013, 2013, 1-12.                                                          | 2.4 | 6         |
| 79 | An Approximate Analytical Method for the Evaluation of the Concentrations and Current for Hybrid Enzyme Biosensor. , 2013, 2013, 1-12.                                                                                                                       |     | 1         |
| 80 | Analytical Solution of Non-Isothermal Diffusion-Reaction Processes and Effectiveness Factors. , 2013, 2013, 1-14.                                                                                                                                            |     | 5         |
| 81 | Mathematical Modeling and Analysis of Nonlinear Enzyme Catalyzed Reaction Processes. Journal of Theoretical Chemistry, 2013, 2013, 1-7.                                                                                                                      | 1.5 | 5         |
| 82 | Analytical expressions of the concentrations of substrate and product in enzyme inhibition process.<br>Natural Science, 2013, 05, 1047-1055.                                                                                                                 | 0.4 | 1         |
| 83 | Analytical Expressions Pertaining to the Concentration of Substrates and Product in<br>Phenol-Polyphenol Oxidase System Immobilized in Laponite Hydrogels: A Reciprocal Competitive<br>Inhibition Process. Advances in Physical Chemistry, 2012, 2012, 1-11. | 2.0 | 3         |
| 84 | Approximate analytical solution of the concentration of phenol and oxygen and rate of phenol degradation in fluidized bed bioreactor. Biochemical Engineering Journal, 2012, 68, 42-53.                                                                      | 3.6 | 2         |
| 85 | Analytical expression of non steady-state concentration for the CE mechanism at a planar electrode.<br>Journal of Mathematical Chemistry, 2012, 50, 1277-1288.                                                                                               | 1.5 | 4         |
| 86 | Mathematical modelling of steady-state concentration in immobilized glucose isomerase of packed-bed reactors. Journal of Mathematical Chemistry, 2012, 50, 1333-1346.                                                                                        | 1.5 | 8         |
| 87 | Theoretical Analysis of Mass Transfer with Chemical Reaction Using Absorption of Carbon Dioxide into Phenyl Glycidyl Ether Solution. Applied Mathematics, 2012, 03, 1179-1186.                                                                               | 0.4 | 9         |
| 88 | Approximate Analytical Solution of Nonlinear Reaction's Diffusion Equation at Conducting Polymer<br>Ultramicroelectrodes. , 2012, 2012, 1-12.                                                                                                                |     | 3         |
| 89 | New Approximate Analytical Expressions for Transient Concentration Profiles and Current Pertaining<br>to a Homogeneous Chemical Reaction at Hemispherical Microelectrodes. Journal of Physical<br>Chemistry A, 2011, 115, 10950-10961.                       | 2.5 | 5         |
| 90 | Analytical Expression of Non-Steady-State Concentrations and Current Pertaining to Compounds<br>Present in the Enzyme Membrane of Biosensor. Journal of Physical Chemistry A, 2011, 115, 4299-4306.                                                          | 2.5 | 4         |

Lakshmanan Rajendran

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Analytical expressions of concentration of nitrate pertaining to the electrocatalytic reduction of nitrate ion. Journal of Electroanalytical Chemistry, 2011, 661, 137-143.                                                                    | 3.8 | 7         |
| 92  | Mathematical modeling of cyclic voltammetry for EC reaction. Russian Journal of Electrochemistry, 2011, 47, 181-190.                                                                                                                           | 0.9 | 9         |
| 93  | Mathematical modeling of cyclic voltammetry for EC2 reaction. Russian Journal of Electrochemistry, 2011, 47, 191-199.                                                                                                                          | 0.9 | 6         |
| 94  | Analytical solution of nonlinear diffusion processes in modified electrode. Russian Journal of Electrochemistry, 2011, 47, 147-155.                                                                                                            | 0.9 | 3         |
| 95  | Mathematical modeling of a tubular spectrochemical cell using the finite Hankel transformation.<br>Russian Journal of Electrochemistry, 2011, 47, 883-889.                                                                                     | 0.9 | 1         |
| 96  | Modeling of nonlinear boundary value problems in enzyme-catalyzed reaction diffusion processes.<br>Journal of Mathematical Chemistry, 2011, 49, 457-474.                                                                                       | 1.5 | 6         |
| 97  | Analytical solution of non-linear enzyme reaction equations arising in mathematical chemistry.<br>Journal of Mathematical Chemistry, 2011, 49, 1713-1726.                                                                                      | 1.5 | 13        |
| 98  | Analytical expression of the steady-state catalytic current of mediated bioelectrocatalysis and the<br>application of He's Homotopy perturbation method. Journal of Mathematical Chemistry, 2011, 49,<br>1727-1740.                            | 1.5 | 9         |
| 99  | Analytical expressions of concentration and current in homogeneous catalytic reactions at spherical microelectrodes: Homotopy perturbation approach. Journal of Electroanalytical Chemistry, 2011, 651, 173-184.                               | 3.8 | 8         |
| 100 | Analytical expression of the concentration of substrates and product in phenol–polyphenol oxidase<br>system immobilized in laponite® hydrogels. Michaelis–Menten formalism in homogeneous medium.<br>Electrochimica Acta, 2011, 56, 6411-6419. | 5.2 | 11        |
| 101 | Analytical solution of amperometric enzymatic reactions based on Homotopy perturbation method.<br>Electrochimica Acta, 2011, 56, 3345-3352.                                                                                                    | 5.2 | 25        |
| 102 | Mathematical modeling in amperometric oxidase enzyme–membrane electrodes. Journal of Membrane<br>Science, 2011, 373, 20-28.                                                                                                                    | 8.2 | 32        |
| 103 | Analytical expressions pertaining to the concentration of catechol, o-quinone and current at<br>PPO-modified microcylinder biosensor for diffusion-kinetic model. Journal of Electroanalytical<br>Chemistry, 2011, 660, 200-208.               | 3.8 | 9         |
| 104 | Mathematical model for steady state current at ppo-modified micro-cylinder biosensors. Journal of<br>Biomedical Science and Engineering, 2011, 04, 631-641.                                                                                    | 0.4 | 6         |
| 105 | Analytical solution of steady state current at a microdisk biosensor. Journal of Electroanalytical<br>Chemistry, 2010, 641, 35-44.                                                                                                             | 3.8 | 26        |
| 106 | Analytical solution of steady-state current an enzyme-modified microcylinder electrodes. Journal of<br>Electroanalytical Chemistry, 2010, 648, 36-46.                                                                                          | 3.8 | 19        |
| 107 | Mathematical modelling of enzyme kinetics reaction mechanisms and analytical solutions of non-linear reaction equations. Journal of Mathematical Chemistry, 2010, 48, 179-186.                                                                 | 1.5 | 22        |
| 108 | Analysis of a pHâ€Based Potentiometric Biosensor Using the Homotopy Perturbation Method. Chemical Engineering and Technology, 2010, 33, 1999-2007.                                                                                             | 1.5 | 7         |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear<br>equations – Homotopy perturbation approach. Journal of Electroanalytical Chemistry, 2010, 644, 50-59.                                                | 3.8 | 64        |
| 110 | Derivation of nonsteady-state analytical solution for surface enzyme kinetics. Journal of Electroanalytical Chemistry, 2010, 647, 87-92.                                                                                                             | 3.8 | 7         |
| 111 | Analytical solution of system of coupled non-linear reaction diffusion equations. Part I: Mediated electron transfer at conducting polymer ultramicroelectrodes. Journal of Electroanalytical Chemistry, 2010, 647, 103-116.                         | 3.8 | 8         |
| 112 | Analytical solution of system of coupled non-linear reaction diffusion equations. Part II: Direct<br>reaction of substrate at underlying microdisc surface. Journal of Electroanalytical Chemistry, 2010,<br>650, 143-151.                           | 3.8 | 7         |
| 113 | System of coupled non-linear reaction diffusion processes at conducting polymer-modified ultramicroelectrodes. Electrochimica Acta, 2010, 55, 3223-3235.                                                                                             | 5.2 | 17        |
| 114 | Solution of steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics. Sensors and Actuators B: Chemical, 2010, 147, 290-297.                                                                                | 7.8 | 33        |
| 115 | Mathematical modeling of diffusion and kinetics in amperometric immobilized enzyme electrodes.<br>Electrochimica Acta, 2010, 55, 5230-5238.                                                                                                          | 5.2 | 31        |
| 116 | Solutions of the Coupled Reaction and Diffusion Equations within Polymer-Modified Ultramicroelectrodes. Journal of Physical Chemistry A, 2010, 114, 7030-7037.                                                                                       | 2.5 | 4         |
| 117 | Traveling-wave solution of non-linear coupled reaction diffusion equation arising in mathematical chemistry. Journal of Mathematical Chemistry, 2009, 46, 550-561.                                                                                   | 1.5 | 10        |
| 118 | A comparison of diffusion-limited currents at microelectrodes of various geometries for EC′ reactions. Electrochimica Acta, 2008, 53, 3566-3578.                                                                                                     | 5.2 | 18        |
| 119 | Application of He's variational iteration method in nonlinear boundary value problems in enzyme–<br>substrate reaction diffusion processes: part 1. The steady-state amperometric response. Journal of<br>Mathematical Chemistry, 2008, 44, 849-861. | 1.5 | 34        |
| 120 | Analytical expression for transient chronoamperometric current at ultramicroband electrode.<br>Russian Journal of Electrochemistry, 2008, 44, 1156-1161.                                                                                             | 0.9 | 5         |
| 121 | MODELING OF NONLINEAR REACTION–DIFFUSION PROCESSES OF AMPEROMETRIC POLYMER-MODIFIED ELECTRODES. Journal of Theoretical and Computational Chemistry, 2008, 07, 113-138.                                                                               | 1.8 | 10        |
| 122 | A COMPARISON OF DIFFUSION-LIMITED CURRENT AT MICROELECTRODES OF VARIOUS GEOMETRIES. Journal of Theoretical and Computational Chemistry, 2008, 07, 205-219.                                                                                           | 1.8 | 3         |
| 123 | THEORIES OF DIFFUSION AT A MICRORING ELECTRODES: A REVIEW. Journal of Theoretical and Computational Chemistry, 2007, 06, 699-713.                                                                                                                    | 1.8 | 0         |
| 124 | THE THEORY OF REACTION-DIFFUSION PROCESSES AT CYLINDRICAL ULTRAMICROELECTRODES. Journal of Theoretical and Computational Chemistry, 2007, 06, 301-307.                                                                                               | 1.8 | 4         |
| 125 | Two-point Padé approximation of mass transfer rate at microdisc electrodes in a channel flow for all Péclet numbers. Electrochimica Acta, 2006, 51, 5407-5411.                                                                                       | 5.2 | 12        |
| 126 | Microring electrode: Transient and steady-state chronoamperometric current for first-order EC reactions. Electrochimica Acta, 2006, 51, 4439-4446.                                                                                                   | 5.2 | 6         |

| #   | Article                                                                                                                                                                                                             | IF       | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 127 | ANALYTICAL SOLUTION FOR THE STEADY-STATE CHRONOAMPEROMETRIC CURRENT FOR AN ECâ€ <sup>2</sup> REACTION A<br>SPHEROIDAL ULTRAMICROELECTRODES. Journal of Theoretical and Computational Chemistry, 2006, 05,<br>11-24. | T<br>1.8 | 7         |
| 128 | Analysis of positive feedback currents at the scanning electrochemical microscope. Journal of Electroanalytical Chemistry, 2004, 561, 113-118.                                                                      | 3.8      | 18        |
| 129 | EChem++ – an object oriented problem solving environment for electrochemistry. Part 1. A C++ class collection for electrochemical excitation functions. Journal of Electroanalytical Chemistry, 2004, 568, 203-214. | 3.8      | 17        |
| 130 | A two-point Padé approximation for the mass-transfer rate at rotating disc electrodes. Journal of Electroanalytical Chemistry, 2003, 547, 173-177.                                                                  | 3.8      | 5         |
| 131 | Modeling of reaction–diffusion processes: part (ii) the theory of catalytic electrode processes at hemi-oblate and prolate ultramicroelectrodes. Electrochemistry Communications, 2002, 4, 72-75.                   | 4.7      | 2         |
| 132 | Transient chronoamperometric current response at hemispheroidal ultramicroelectrodes. Journal of<br>Electroanalytical Chemistry, 2001, 501, 210-214.                                                                | 3.8      | 6         |
| 133 | Padé approximation of EC′ processes at channel electrodes. Journal of Electroanalytical Chemistry,<br>2000, 487, 72-74.                                                                                             | 3.8      | 4         |
| 134 | Analysis of non-steady-state current at hemispheroidal ultramicroelectrodes. Electrochemistry Communications, 2000, 2, 531-534.                                                                                     | 4.7      | 8         |
| 135 | Modelling of reaction–diffusion processes: the theory of catalytic electrode processes at hemispheroidal ultramicroelectrodes. Electrochemistry Communications, 2000, 2, 679-684.                                   | 4.7      | 16        |
| 136 | Padé approximation of ECE and DISP processes at channel electrodes. Electrochemistry Communications, 2000, 2, 186-189.                                                                                              | 4.7      | 14        |
| 137 | Diffusion at Ultramicro Disk Electrodes: Chronoamperometric Current for Steady-State Ec†Reaction<br>Using Scattering Analogue Techniques. Journal of Physical Chemistry B, 1999, 103, 1518-1524.                    | 2.6      | 54        |
| 138 | Chronoamperometric Current at Ultramicroelectrodes: Padé Approximation for a Reversible Electron<br>Transfer Scheme. Electroanalysis, 1998, 10, 506-511.                                                            | 2.9      | 10        |
| 139 | Diffusion at Ultramicroelectrodes: Chronoamperometric Current Response Using Padé<br>Approximation. Journal of Physical Chemistry B, 1997, 101, 4583-4587.                                                          | 2.6      | 21        |
| 140 | A two-point Padé approximation for the non-steady-state chronoamperometric current at ultramicrodisc electrodes. Journal of Electroanalytical Chemistry, 1995, 392, 75-78.                                          | 3.8      | 24        |
| 141 | Mathematical Modeling and Simulation of Nonlinear Process in Enzyme Kinetics. , 0, , .                                                                                                                              |          | 3         |
| 142 | Analytical Solution of Cubic Autocatalytic Reaction-Diffusion Equations. , 0, , 199-218.                                                                                                                            |          | 0         |
| 143 | Transport and Reaction Kinetics in Enzymatic Reaction Process in Multiscale Porous Biocatalytic<br>Electrodes. Chemistry Africa, 0, , .                                                                             | 2.4      | 1         |