
David A Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8445300/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurons, Receptors, and Channels. Annual Review of Pharmacology and Toxicology, 2020, 60, 9-30.	9.4	6
2	Acetylcholine and cholinergic receptors. Brain and Neuroscience Advances, 2019, 3, 239821281882050.	3.4	41
3	The subthreshold-active KV7 current regulates neurotransmission by limiting spike-induced Ca2+ influx in hippocampal mossy fiber synaptic terminals. Communications Biology, 2019, 2, 145.	4.4	19
4	Regulation of neural ion channels by muscarinic receptors. Neuropharmacology, 2018, 136, 383-400.	4.1	28
5	Norman Bowery's discoveries about extrasynaptic and asynaptic GABA systems and their significance. Neuropharmacology, 2018, 136, 3-9.	4.1	3
6	Kv7 channels are upregulated during striatal neuron development and promote maturation of human iPSC-derived neurons. Pflugers Archiv European Journal of Physiology, 2018, 470, 1359-1376.	2.8	13
7	Effects of serum immunoglobulins from patients with complex regional pain syndrome (CRPS) on depolarisation-induced calcium transients in isolated dorsal root ganglion (DRG) neurons. Experimental Neurology, 2016, 277, 96-102.	4.1	6
8	Cholinergic Afferent Stimulation Induces Axonal Function Plasticity in Adult Hippocampal Granule Cells. Neuron, 2015, 85, 346-363.	8.1	92
9	Kv7/M-type potassium channels in rat skin keratinocytes. Pflugers Archiv European Journal of Physiology, 2013, 465, 1371-1381.	2.8	8
10	Scopolamine modulates paternal parental retrieval behavior in mice induced by the maternal mate. Neuroscience Letters, 2013, 546, 63-66.	2.1	12
11	A basic residue in the proximal C-terminus is necessary for efficient activation of the M-channel subunit Kv7.2 by PI(4,5)P2. Pflugers Archiv European Journal of Physiology, 2013, 465, 945-953.	2.8	23
12	A Mechanism for Nerve Cell Excitation by Norepinephrine via Alpha-1 Adrenoceptors: Inhibition of Potassium M-Current. Cellular and Molecular Neurobiology, 2013, 33, 1-4.	3.3	5
13	Effects of KCNQ2 Gene Truncation on M-Type Kv7 Potassium Currents. PLoS ONE, 2013, 8, e71809.	2.5	20
14	Distinct subunit contributions to the activation of M-type potassium channels by PI(4,5)P2. Journal of General Physiology, 2012, 140, 41-53.	1.9	32
15	Structural Requirements of Membrane Phospholipids for M-type Potassium Channel Activation and Binding. Journal of Biological Chemistry, 2012, 287, 10001-10012.	3.4	34
16	Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings. Frontiers in Molecular Neuroscience, 2012, 5, 63.	2.9	49
17	Differential effects of Kv7 (Mâ€) channels on synaptic integration in distinct subcellular compartments of rat hippocampal pyramidal neurons. Journal of Physiology, 2011, 589, 6029-6038.	2.9	47
18	Muscarinic Acetylcholine Receptors (mAChRs) in the Nervous System: Some Functions and Mechanisms. Journal of Molecular Neuroscience, 2010, 41, 340-346.	2.3	147

DAVID A BROWN

#	Article	IF	CITATIONS
19	The Scaffold Protein NHERF2 Determines the Coupling of P2Y1 Nucleotide and mGluR5 Glutamate Receptor to Different Ion Channels in Neurons. Journal of Neuroscience, 2010, 30, 11068-11072.	3.6	15
20	Some new insights into the molecular mechanisms of pain perception. Journal of Clinical Investigation, 2010, 120, 1380-1383.	8.2	26
21	Neural <i>KCNQ</i> (Kv7) channels. British Journal of Pharmacology, 2009, 156, 1185-1195.	5.4	563
22	Kν7 (KCNQ) potassium channels that are mutated in human diseases. Journal of Physiology, 2008, 586, 1781-1783.	2.9	21
23	Presynaptic Signaling by Heterotrimeric G-Proteins. Handbook of Experimental Pharmacology, 2008, , 207-260.	1.8	68
24	Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7869-7874.	7.1	242
25	Hippocalcin: A New Solution to an Old Puzzle. Neuron, 2007, 53, 467-468.	8.1	4
26	Regulation of M(Kv7.2/7.3) channels in neurons by PIP2and products of PIP2hydrolysis: significance for receptor-mediated inhibition. Journal of Physiology, 2007, 582, 917-925.	2.9	85
27	PIP2-dependent inhibition of M-type (Κν7.2/7.3) potassium channels: direct on-line assessment of PIP2 depletion by Gq-coupled receptors in single living neurons. Pflugers Archiv European Journal of Physiology, 2007, 455, 115-124.	2.8	45
28	Simultaneous Release of Glutamate and Acetylcholine from Single Magnocellular "Cholinergic" Basal Forebrain Neurons. Journal of Neuroscience, 2006, 26, 1588-1595.	3.6	71
29	Acetylcholine. British Journal of Pharmacology, 2006, 147, S120-S126.	5.4	31
30	Probing the Regulation of M (Kv7) Potassium Channels in Intact Neurons with Membrane-Targeted Peptides. Journal of Neuroscience, 2006, 26, 7950-7961.	3.6	49
31	Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nature Reviews Neuroscience, 2005, 6, 850-862.	10.2	597
32	Relationship between Membrane Phosphatidylinositol-4,5-Bisphosphate and Receptor-Mediated Inhibition of Native Neuronal M Channels. Journal of Neuroscience, 2005, 25, 3400-3413.	3.6	154
33	Functional organization of PLC signaling microdomains in neurons. Trends in Neurosciences, 2004, 27, 41-47.	8.6	81
34	Signalling pathways and ion channel regulations of P2Y receptors. Drug Development Research, 2003, 59, 36-48.	2.9	1
35	AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nature Neuroscience, 2003, 6, 564-571.	14.8	219
36	Stoichiometry of Expressed KCNQ2/KCNQ3 Potassium Channels and Subunit Composition of Native Ganglionic M Channels Deduced from Block by Tetraethylammonium. Journal of Neuroscience, 2003, 23, 5012-5019.	3.6	116

DAVID A BROWN

#	Article	IF	CITATIONS
37	KCNQ/M Currents in Sensory Neurons: Significance for Pain Therapy. Journal of Neuroscience, 2003, 23, 7227-7236.	3.6	323
38	Signaling Microdomains Define the Specificity of Receptor-Mediated InsP3 Pathways in Neurons. Neuron, 2002, 34, 209-220.	8.1	240
39	Multiple pertussis toxin-sensitive G-proteins can couple receptors to GIRK channels in rat sympathetic neurons when expressed heterologously, but only native Gi-proteins do soin situ. European Journal of Neuroscience, 2001, 14, 283-292.	2.6	30
40	Alternative splicing of KCNQ2 potassium channel transcripts contributes to the functional diversity of M urrents. Journal of Physiology, 2001, 531, 347-358.	2.9	40
41	Calcium channel gating and modulation by transmitters depend on cellular compartmentalization. Nature Neuroscience, 2000, 3, 670-678.	14.8	52
42	The P2Y1 receptor closes the N-type Ca2+ channel in neurones, with both adenosine triphosphates and diphosphates as potent agonists. British Journal of Pharmacology, 2000, 129, 1063-1066.	5.4	68
43	Neurobiology: The acid test for resting potassium channels. Current Biology, 2000, 10, R456-R459.	3.9	13
44	Both linopirdine- and WAY123,398-sensitive components of I K(M,ng) are modulated by cyclic ADP ribose in NG108-15 cells. Pflugers Archiv European Journal of Physiology, 2000, 441, 228-234.	2.8	14
45	Muscarinic Inhibition of Calcium Current and M Current in $\hat{Gl_{\pm}q}$ -Deficient Mice. Journal of Neuroscience, 2000, 20, 3973-3979.	3.6	73
46	Bradykinin, But Not Muscarinic, Inhibition of M-Current in Rat Sympathetic Ganglion Neurons Involves Phospholipase C-β4. Journal of Neuroscience, 2000, 20, RC105-RC105.	3.6	26
47	βγ dimers derived from Goand Giproteins contribute different components of adrenergic inhibition of Ca2+channels in rat sympathetic neurones. Journal of Physiology, 1999, 518, 23-36.	2.9	57
48	Selective activation of heterologously expressed G protein-gated K+channels by M2muscarinic receptors in rat sympathetic neurones. Journal of Physiology, 1999, 515, 631-637.	2.9	48
49	Dual coupling of heterologously-expressed rat P2Y6 nucleotide receptors to N-type Ca2+ and M-type K+ currents in rat sympathetic neurones. British Journal of Pharmacology, 1999, 126, 1009-1017.	5.4	63
50	On the role of endogenous G-protein βγ subunits in N-type Ca2+current inhibition by neurotransmitters in rat sympathetic neurones. Journal of Physiology, 1998, 506, 319-329.	2.9	71
51	G-proteins and G-protein subunits mediating cholinergic inhibition of N-type calcium currents in sympathetic neurons. European Journal of Neuroscience, 1998, 10, 1654-1666.	2.6	71
52	P2Y2Nucleotide Receptors Expressed Heterologously in Sympathetic Neurons Inhibit Both N-Type Ca2+and M-Type K+Currents. Journal of Neuroscience, 1998, 18, 5170-5179.	3.6	77
53	The α Subunit of GqContributes to Muscarinic Inhibition of the M-Type Potassium Current in Sympathetic Neurons. Journal of Neuroscience, 1998, 18, 4521-4531.	3.6	79
54	The cloning of GABAB receptors. Nature, 1997, 386, 223-224.	27.8	54

DAVID A BROWN

#	Article	IF	CITATIONS
55	M-type K+ current inhibition by a toxin from the scorpion Buthus eupeus. FEBS Letters, 1996, 384, 277-280.	2.8	13
56	Individuals' rights and wrongs. Nature, 1996, 383, 474-474.	27.8	0
57	Whole-cell recording of neuroblastoma x glioma cells during downregulation of a major substrate, 80K/MARCKS, of protein kinase C. Journal of Membrane Biology, 1993, 133, 51-9.	2.1	5
58	Characterization of a Calcium-dependent Current Generating a Slow Afterdepolarization of CA3 Pyramidal Cells in Rat Hippocampal Slice Cultures. European Journal of Neuroscience, 1993, 5, 560-569.	2.6	91
59	Identification of M-channels in outside-out patches excised from sympathetic ganglion cells. Neuron, 1993, 10, 639-654.	8.1	36
60	Substance P-mediated membrane currents in voltage-clamped guinea pig inferior mesenteric ganglion cells. Synapse, 1988, 2, 432-441.	1.2	7
61	Need for speed of transmission. Nature, 1988, 335, 475-475.	27.8	1
62	M Currents. , 1988, 1, 55-94.		109
63	Effects of phorbol dibutyrate on M currents and M current inhibition in bullfrog sympathetic neurons. Cellular and Molecular Neurobiology, 1987, 7, 255-269.	3.3	51
64	Two polyphosphatidylinositide metabolites control two K+ currents in a neuronal cell. Nature, 1986, 323, 333-335.	27.8	265
65	Evoked surface-positive potentials in isolated mammalian olfactory cortex. Brain Research, 1974, 76, 235-245.	2.2	67
66	Control of Neuronal Activity. , 0, , 33-56.		0