Sumit Singh Dagar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8445010/publications.pdf

Version: 2024-02-01

38 1,473 17
papers citations h-index

17 35
h-index g-index

42 42 all docs citations

42 times ranked 1410 citing authors

#	Article	IF	CITATIONS
1	Anaerobic fungi (phylum <i>Neocallimastigomycota < i>): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiology Ecology, 2014, 90, 1-17.</i>	2.7	298
2	New aspects and strategies for methane mitigation from ruminants. Applied Microbiology and Biotechnology, 2014, 98, 31-44.	3.6	120
3	PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities. Frontiers in Microbiology, 2017, 8, 1657.	3.5	118
4	Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys, 0, 9, 11-28.	1.9	95
5	Factors affecting rumen methanogens and methane mitigation strategies. World Journal of Microbiology and Biotechnology, 2009, 25, 1557-1566.	3.6	75
6	A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biology, 2015, 119, 731-737.	2.5	71
7	D1/D2 Domain of Large-Subunit Ribosomal DNA for Differentiation of Orpinomyces spp. Applied and Environmental Microbiology, 2011, 77, 6722-6725.	3.1	62
8	Horizontal Gene Transfer as an Indispensable Driver for Evolution of Neocallimastigomycota into a Distinct Gut-Dwelling Fungal Lineage. Applied and Environmental Microbiology, 2019, 85, .	3.1	61
9	Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Applied Microbiology and Biotechnology, 2012, 95, 1135-1154.	3.6	54
10	Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys, 2018, 40, 89-110.	1.9	52
11	Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia, 2020, 112, 1212-1239.	1.9	50
12	Microbial profiles, in vitro gas production and dry matter digestibility based on various ratios of roughage to concentrate. Annals of Microbiology, 2013, 63, 541-545.	2.6	47
13	Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: A review. Journal of Integrative Agriculture, 2015, 14, 550-560.	3.5	46
14	Changes in methane emission, rumen fermentation in response to diet and microbial interactions. Research in Veterinary Science, 2013, 94, 263-268.	1.9	33
15	Isolation and characterization of methanogens from rumen of Murrah buffalo. Annals of Microbiology, 2012, 62, 345-350.	2.6	30
16	Ribosomal ITS1 sequence-based diversity analysis of anaerobic rumen fungi in cattle fed on high fiber diet. Annals of Microbiology, 2013, 63, 1571-1577.	2.6	25
17	Isolation, characterization and fibre degradation potential of anaerobic rumen fungi from cattle. Annals of Microbiology, 2013, 63, 1187-1194.	2.6	22
18	Bioaugmentation of anaerobic fungus Orpinomyces joyonii boosts sustainable biomethanation of rice straw without pretreatment. Biomass and Bioenergy, 2020, 138, 105546.	5.7	20

#	Article	IF	CITATIONS
19	Cultivation of multiple genera of hydrogenotrophic methanogens from different environmental niches. Anaerobe, 2018, 50, 64-68.	2.1	19
20	Enumeration of methanogens with a focus on fluorescence in situ hybridization. Die Naturwissenschaften, 2011, 98, 457-472.	1.6	17
21	Meta-omics based analyses of microbiome involved in biomethanation of rice straw in a thermophilic anaerobic bioreactor under optimized conditions. Bioresource Technology, 2019, 279, 25-33.	9.6	17
22	Illustration of the microbial community selected by optimized process and nutritional parameters resulting in enhanced biomethanation of rice straw without thermo-chemical pretreatment. Bioresource Technology, 2019, 289, 121639.	9.6	17
23	Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India. Mycobiology, 2020, 48, 501-511.	1.7	16
24	Comparative evaluation of lignocellulolytic activities of filamentous cultures of monocentric and polycentric anaerobic fungi. Anaerobe, 2018, 50, 76-79.	2.1	14
25	Taxonomy of the anaerobic gut fungi (Neocallimastigomycota): a review of classification criteria and description of current taxa. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	11
26	Genomic architecture of three newly isolated unclassified Butyrivibrio species elucidate their potential role in the rumen ecosystem. Genomics, 2022, 114, 110281.	2.9	9
27	\hat{l}^2 -Glucosidase Activity of Lactobacilli for Biotransformation of Soy Isoflavones. Food Biotechnology, 2012, 26, 154-163.	1.5	8
28	Role of anaerobic fungi in wheat straw degradation and effects of plant feed additives on rumen fermentation parameters in vitro. Beneficial Microbes, 2015, 6, 353-360.	2.4	8
29	Comparative diversity analysis of ruminal methanogens in Murrah buffaloes (Bubalus bubalis) in four states of North India. Anaerobe, 2018, 52, 59-63.	2.1	7
30	Buffalo rumen harbours diverse thermotolerant yeasts capable of producing second-generation bioethanol from lignocellulosic biomass. Renewable Energy, 2021, 173, 795-807.	8.9	7
31	Genome sequencing and analysis of a psychrotrophic methanogen Methanosarcina sp. nov. MSH10X1 cultured from methane hydrate deposits of Krishna Godavari Basin of India. Marine Genomics, 2021, 59, 100864.	1.1	7
32	Genomic Analysis of Actinomyces sp. Strain CtC72, a Novel Fibrolytic Anaerobic Bacterium Isolated from Cattle Rumen. Microbiology and Biotechnology Letters, 2018, 46, 59-67.	0.4	7
33	Morphological variation in the porcelaneous benthic foraminifer Quinqueloculina seminula (Linnaeus, 1758): Genotypes or Morphotypes? A detailed morphotaxonomic, molecular and ecological investigation. Marine Micropaleontology, 2019, 150, 101748.	1.2	6
34	Editorial: Advances in the Understanding of the Commensal Eukaryota and Viruses of the Herbivore Gut. Frontiers in Microbiology, 2021, 12, 619287.	3.5	5
35	Prospective use of bacteriocinogenic Pediococcus pentosaceus as direct-fed microbial having methane reducing potential. Journal of Integrative Agriculture, 2015, 14, 561-566.	3.5	4
36	Compost as an untapped niche for thermotolerant yeasts capable of highâ€ŧemperature ethanol production. Letters in Applied Microbiology, 2022, 74, 109-121.	2.2	3

3

SUMIT SINGH DAGAR

#	Article	IF	CITATIONS
37	Genomics and simulated laboratory studies reveal Thermococcus sp. 101C5 as a novel hyperthermophilic archaeon possessing a specialized metabolic arsenal for enhanced oil recovery. Antonie Van Leeuwenhoek, 2022, 115, 19-31.	1.7	1
38	Antiparasitics from Microorganisms. Environmental Chemistry for A Sustainable World, 2019, , 27-47.	0.5	0