Augen A Pioszak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8443974/publications.pdf

Version: 2024-02-01

430874 501196 32 1,472 18 28 citations g-index h-index papers 34 34 34 1197 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Affinity Enhancers for Peptide Ligand Binding to the Extracellular Domain of the Amylin Receptor 2. FASEB Journal, 2021, 35, .	0.5	O
2	A Native PAGE Assay for the Biochemical Characterization of G Protein Coupling to GPCRs. Bio-protocol, 2021, 11 , e4266.	0.4	3
3	Molecular interaction of an antagonistic amylin analog with the extracellular domain of receptor activity-modifying protein 2 assessed by fluorescence polarization. Biophysical Chemistry, 2020, 267, 106477.	2.8	7
4	Picomolar Affinity Antagonist and Sustained Signaling Agonist Peptide Ligands for the Adrenomedullin and Calcitonin Gene-Related Peptide Receptors. ACS Pharmacology and Translational Science, 2020, 3, 759-772.	4.9	8
5	RAMPs as allosteric modulators of the calcitonin and calcitonin-like class B G protein-coupled receptors. Advances in Pharmacology, 2020, 88, 115-141.	2.0	26
6	Biochemical characterization of G protein coupling to calcitonin gene–related peptide and adrenomedullin receptors using a native PAGE assay. Journal of Biological Chemistry, 2020, 295, 9736-9751.	3.4	7
7	Identification of Small-Molecule Positive Modulators of Calcitonin-like Receptor-Based Receptors. ACS Pharmacology and Translational Science, 2020, 3, 305-320.	4.9	17
8	Calcitonin Receptor N-Glycosylation Enhances Peptide Hormone Affinity by Controlling Receptor Dynamics. Journal of Molecular Biology, 2020, 432, 1996-2014.	4.2	31
9	Development of Picomolar Affinity Antagonists and Longâ€acting Agonists for the Adrenomedullin and CGRP Receptors Using Combinatorial Peptide Library and Structureâ€guided Design Approaches. FASEB Journal, 2020, 34, 1-1.	0.5	0
10	Biochemical Characterization of Receptor Activityâ€Modifying Protein and Peptide Agonist Effects on G protein Coupling to the Calcitoninâ€Like Receptor. FASEB Journal, 2020, 34, 1-1.	0.5	0
11	Probing the Mechanism of Receptor Activity–Modifying Protein Modulation of GPCR Ligand Selectivity through Rational Design of Potent Adrenomedullin and Calcitonin Gene-Related Peptide Antagonists. Molecular Pharmacology, 2018, 93, 355-367.	2.3	39
12	Molecular Signature for Receptor Engagement in the Metabolic Peptide Hormone Amylin. ACS Pharmacology and Translational Science, 2018, 1, 32-49.	4.9	48
13	Structure–function analyses reveal a triple β-turn receptor-bound conformation of adrenomedullin 2/intermedin and enable peptide antagonist design. Journal of Biological Chemistry, 2018, 293, 15840-15854.	3.4	21
14	Calcitonin Receptor., 2018,, 648-655.		0
15	N-Glycosylation of Asparagine 130 in the Extracellular Domain of the Human Calcitonin Receptor Significantly Increases Peptide Hormone Affinity. Biochemistry, 2017, 56, 3380-3393.	2.5	18
16	Receptor Activity-modifying Proteins 2 and 3 Generate Adrenomedullin Receptor Subtypes with Distinct Molecular Properties. Journal of Biological Chemistry, 2016, 291, 11657-11675.	3.4	36
17	Calcitonin and Amylin Receptor Peptide Interaction Mechanisms. Journal of Biological Chemistry, 2016, 291, 8686-8700.	3.4	59
18	An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology. Cell Discovery, 2016, 2, 16012.	6.7	44

#	Article	IF	Citations
19	Receptor Activity-Modifying Proteins (RAMPs): New Insights and Roles. Annual Review of Pharmacology and Toxicology, 2016, 56, 469-487.	9.4	153
20	Calcitonin Receptor., 2016,, 1-7.		0
21	Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs. European Journal of Pharmacology, 2015, 763, 196-205.	3 . 5	57
22	Engineering High-Potency R-spondin Adult Stem Cell Growth Factors. Molecular Pharmacology, 2015, 87, 410-420.	2.3	18
23	Structural Basis for Receptor Activity-Modifying Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled Receptor. Molecular Cell, 2015, 58, 1040-1052.	9.7	112
24	Reconstitution of R-Spondin:LGR4:ZNRF3 Adult Stem Cell Growth Factor Signaling Complexes with Recombinant Proteins Produced in <i>Escherichia coli</i>). Biochemistry, 2013, 52, 7295-7304.	2.5	25
25	Bacterial expression and purification of a heterodimeric adrenomedullin receptor extracellular domain complex using DsbC-assisted disulfide shuffling. Protein Expression and Purification, 2013, 88, 107-113.	1.3	12
26	Selective CGRP and adrenomedullin peptide binding by tethered RAMPâ€calcitonin receptorâ€like receptor extracellular domain fusion proteins. Protein Science, 2013, 22, 1775-1785.	7.6	31
27	Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors. PLoS ONE, 2011, 6, e19682.	2.5	58
28	Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation. Journal of Biological Chemistry, 2010, 285, 12435-12444.	3.4	54
29	Structural Basis for Hormone Recognition by the Human CRFR2α G Protein-coupled Receptor. Journal of Biological Chemistry, 2010, 285, 40351-40361.	3.4	73
30	Structural Basis for Parathyroid Hormone-related Protein Binding to the Parathyroid Hormone Receptor and Design of Conformation-selective Peptides. Journal of Biological Chemistry, 2009, 284, 28382-28391.	3.4	129
31	Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5034-5039.	7.1	232
32	Molecular Recognition of Corticotropin-releasing Factor by Its G-protein-coupled Receptor CRFR1. Journal of Biological Chemistry, 2008, 283, 32900-32912.	3.4	141