Qianben Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8443413/publications.pdf

Version: 2024-02-01

		109264	149623
56	7,525	35	56
papers	citations	h-index	g-index
57	57	57	10668
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dietary omega-3 fatty acid intake impacts peripheral blood DNA methylation -anti-inflammatory effects and individual variability in a pilot study. Journal of Nutritional Biochemistry, 2022, 99, 108839.	1.9	5
2	Phosphorylated MED1 links transcription recycling and cancer growth. Nucleic Acids Research, 2022, 50, 4450-4463.	6.5	2
3	Dynamic nucleosome landscape elicits a noncanonical GATA2 pioneer model. Nature Communications, 2022, 13, .	5.8	2
4	The oncogenomic function of androgen receptor in esophageal squamous cell carcinoma is directed by GATA3. Cell Research, 2021, 31, 362-365.	5.7	10
5	Alternative polyadenylation of mRNA and its role in cancer. Genes and Diseases, 2021, 8, 61-72.	1.5	57
6	A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
7	Transcription recycling assays identify PAF1 as a driver for RNA Pol II recycling. Nature Communications, 2021, 12, 6318.	5. 8	4
8	Prostate Cancer Cell Phenotypes Remain Stable Following PDE5 Inhibition in the Clinically Relevant Range. Translational Oncology, 2020, 13, 100797.	1.7	8
9	Shaping Chromatin States in Prostate Cancer by Pioneer Transcription Factors. Cancer Research, 2020, 80, 2427-2436.	0.4	54
10	Molecular determinants for enzalutamide-induced transcription in prostate cancer. Nucleic Acids Research, 2019, 47, 10104-10114.	6.5	27
11	Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer. Science Translational Medicine, $2019, 11, \ldots$	5. 8	63
12	Single-Cell RNA-seq Reveals a Subpopulation of Prostate Cancer Cells with Enhanced Cell-Cycleâ€"Related Transcription and Attenuated Androgen Response. Cancer Research, 2018, 78, 853-864.	0.4	90
13	Chromatin-associated APC regulates gene expression in collaboration with canonical WNT signaling and AP-1. Oncotarget, 2018, 9, 31214-31230.	0.8	7
14	Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6810-6815.	3.3	120
15	Loss of tumor suppressor IGFBP4 drives epigenetic reprogramming in hepatic carcinogenesis. Nucleic Acids Research, 2018, 46, 8832-8847.	6.5	40
16	Genome-wide analysis reveals positional-nucleosome-oriented binding pattern of pioneer factor FOXA1. Nucleic Acids Research, 2016, 44, 7540-7554.	6.5	15
17	Integrative analysis identifies targetable CREB1/FoxA1 transcriptional co-regulation as a predictor of prostate cancer recurrence. Nucleic Acids Research, 2016, 44, 4105-4122.	6.5	38
18	Agonist and antagonist switch <scp>DNA</scp> motifs recognized by human androgen receptor in prostate cancer. EMBO Journal, 2015, 34, 502-516.	3.5	74

#	Article	IF	CITATIONS
19	Redeployment of Myc and E2f1–3 drives Rb-deficient cell cycles. Nature Cell Biology, 2015, 17, 1036-1048.	4.6	62
20	Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6128-6133.	3.3	79
21	Ligand-dependent genomic function of glucocorticoid receptor in triple-negative breast cancer. Nature Communications, 2015, 6, 8323.	5.8	74
22	Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nature Genetics, 2015, 47, 1149-1157.	9.4	276
23	Knockdown of PRKAR1A, the Gene Responsible for Carney Complex, Interferes With Differentiation in Osteoblastic Cells. Molecular Endocrinology, 2014, 28, 295-307.	3.7	19
24	Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer. Nucleic Acids Research, 2014, 42, 3607-3622.	6.5	115
25	Computational analysis reveals a correlation of exon-skipping events with splicing, transcription and epigenetic factors. Nucleic Acids Research, 2014, 42, 2856-2869.	6.5	26
26	S100A14: Novel Modulator of Terminal Differentiation in Esophageal Cancer. Molecular Cancer Research, 2013, 11, 1542-1553.	1.5	25
27	Ultra-Rare Mutation in Long-Range Enhancer Predisposes to Thyroid Carcinoma with High Penetrance. PLoS ONE, 2013, 8, e61920.	1.1	36
28	ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. Journal of Clinical Investigation, 2013, 123, 1109-1122.	3.9	227
29	Cooperation between Polycomb and androgen receptor during oncogenic transformation. Genome Research, 2012, 22, 322-331.	2.4	122
30	Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages. Nucleic Acids Research, 2012, 40, 7690-7704.	6.5	94
31	Cross-talk between HER2 and MED1 Regulates Tamoxifen Resistance of Human Breast Cancer Cells. Cancer Research, 2012, 72, 5625-5634.	0.4	80
32	Mapping mutations in prostate cancer exomes. Asian Journal of Andrology, 2012, 14, 801-802.	0.8	1
33	Androgen receptor-driven chromatin looping in prostate cancer. Trends in Endocrinology and Metabolism, 2011, 22, 474-480.	3.1	45
34	Phospho-MED1-enhanced UBE2C locus looping drives castration-resistant prostate cancer growth. EMBO Journal, 2011, 30, 2405-2419.	3 . 5	108
35	CCI-779 Inhibits Cell-Cycle G2–M Progression and Invasion of Castration-Resistant Prostate Cancer via Attenuation of UBE2C Transcription and mRNA Stability. Cancer Research, 2011, 71, 4866-4876.	0.4	50
36	CaM Kinase Kinase \hat{l}^2 -Mediated Activation of the Growth Regulatory Kinase AMPK Is Required for Androgen-Dependent Migration of Prostate Cancer Cells. Cancer Research, 2011, 71, 528-537.	0.4	124

#	Article	IF	CITATIONS
37	Energy Restriction-mimetic Agents Induce Apoptosis in Prostate Cancer Cells in Part through Epigenetic Activation of KLF6 Tumor Suppressor Gene Expression*. Journal of Biological Chemistry, 2011, 286, 9968-9976.	1.6	17
38	Definition of a FoxA1 Cistrome That Is Crucial for G1 to S-Phase Cell-Cycle Transit in Castration-Resistant Prostate Cancer. Cancer Research, 2011, 71, 6738-6748.	0.4	87
39	Nucleosome dynamics define transcriptional enhancers. Nature Genetics, 2010, 42, 343-347.	9.4	426
40	Estrogen-mediated epigenetic repression of large chromosomal regions through DNA looping. Genome Research, 2010, 20, 733-744.	2.4	85
41	Histone modifications and chromatin organization in prostate cancer. Epigenomics, 2010, 2, 551-560.	1.0	71
42	Induction of Krüppel-Like Factor 5 Expression by Androgens Results in Increased CXCR4-Dependent Migration of Prostate Cancer Cells <i>in Vitro</i> . Molecular Endocrinology, 2009, 23, 1385-1396.	3.7	62
43	Genome-Wide Impact of Androgen Receptor Trapped clone-27 Loss on Androgen-Regulated Transcription in Prostate Cancer Cells. Cancer Research, 2009, 69, 3140-3147.	0.4	25
44	Androgen Receptor Regulates a Distinct Transcription Program in Androgen-Independent Prostate Cancer. Cell, 2009, 138, 245-256.	13.5	797
45	The Role of microRNA-221 and microRNA-222 in Androgen-Independent Prostate Cancer Cell Lines. Cancer Research, 2009, 69, 3356-3363.	0.4	236
46	Androgen receptor mediates the expression of UDPâ€glucuronosyltransferase 2 B15 and B17 genes. Prostate, 2008, 68, 839-848.	1.2	67
47	FoxA1 Translates Epigenetic Signatures into Enhancer-Driven Lineage-Specific Transcription. Cell, 2008, 132, 958-970.	13.5	863
48	Target Gene-Specific Regulation of Androgen Receptor Activity by p42/p44 Mitogen-Activated Protein Kinase. Molecular Endocrinology, 2008, 22, 2420-2432.	3.7	30
49	A Hierarchical Network of Transcription Factors Governs Androgen Receptor-Dependent Prostate Cancer Growth. Molecular Cell, 2007, 27, 380-392.	4.5	598
50	Genome-wide analysis of estrogen receptor binding sites. Nature Genetics, 2006, 38, 1289-1297.	9.4	1,227
51	Spatial and Temporal Recruitment of Androgen Receptor and Its Coactivators Involves Chromosomal Looping and Polymerase Tracking. Molecular Cell, 2005, 19, 631-642.	4.5	401
52	Mechanistic Relationship between Androgen Receptor Polyglutamine Tract Truncation and Androgen-dependent Transcriptional Hyperactivity in Prostate Cancer Cells. Journal of Biological Chemistry, 2004, 279, 17319-17328.	1.6	44
53	A Coregulatory Role for the TRAP-Mediator Complex in Androgen Receptor-mediated Gene Expression. Journal of Biological Chemistry, 2002, 277, 42852-42858.	1.6	90
54	Repression of androgen receptor mediated transcription by the ErbB-3 binding protein, Ebp1. Oncogene, 2002, 21, 5609-5618.	2.6	70

#	Article	IF	CITATIONS
55	Generation of a Mammalian Cell Line Stably Expressing a Tetracycline-Regulated Epitope-Tagged Human Androgen Receptor: Implications for Steroid Hormone Receptor Research. Analytical Biochemistry, 2001, 289, 217-230.	1.1	10
56	Specific Structural Motifs Determine TRAP220 Interactions with Nuclear Hormone Receptors. Molecular and Cellular Biology, 2000, 20, 5433-5446.	1.1	105