
## Antonio Ramirez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8443400/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2022, 26, 1-9.                                                                                                                                             | 2.7  | 1         |
| 2  | Discovery of Annulating Reagents Enabling the One-Step and Highly Stereoselective Synthesis of<br>Cyclopentyl and Cyclohexyl Cores. Organic Letters, 2021, 23, 60-65.                                                                                              | 4.6  | 3         |
| 3  | Mechanistic Studies of a Pd-Catalyzed Direct Arylation En Route to Beclabuvir: Dual Role of a<br>Tetramethylammonium Cation and an Unusual Turnover-Limiting Step. ACS Catalysis, 2021, 11, 2460-2472.                                                             | 11.2 | 2         |
| 4  | Photocatalytic Dearomative Intermolecular [2 + 2] Cycloaddition of Heterocycles for Building Molecular Complexity. Journal of Organic Chemistry, 2021, 86, 1730-1747.                                                                                              | 3.2  | 45        |
| 5  | Applications of Quantum Chemistry in Pharmaceutical Process Development: Current State and Opportunities. Organic Process Research and Development, 2020, 24, 1496-1507.                                                                                           | 2.7  | 25        |
| 6  | Predicting Performance of Photochemical Transformations for Scaling Up in Different Platforms by<br>Combining High-Throughput Experimentation with Computational Modeling. Organic Process<br>Research and Development, 2020, 24, 2128-2138.                       | 2.7  | 23        |
| 7  | Serine-Selective Bioconjugation. Journal of the American Chemical Society, 2020, 142, 17236-17242.                                                                                                                                                                 | 13.7 | 58        |
| 8  | An Improved P <sup>III</sup> /P <sup>V</sup> â•O-Catalyzed Reductive C–N Coupling of Nitroaromatics and<br>Boronic Acids by Mechanistic Differentiation of Rate- and Product-Determining Steps. Journal of the<br>American Chemical Society, 2020, 142, 6786-6799. | 13.7 | 68        |
| 9  | Synthesis of Cyclobutane-Fused Tetracyclic Scaffolds via Visible-Light Photocatalysis for Building<br>Molecular Complexity. Journal of the American Chemical Society, 2020, 142, 3094-3103.                                                                        | 13.7 | 92        |
| 10 | A Practical and Robust Multistep Continuous Process for Manufacturing<br>5-Bromo- <i>N</i> -( <i>tert</i> -butyl)pyridine-3-sulfonamide. Organic Process Research and<br>Development, 2019, 23, 2088-2095.                                                         | 2.7  | 13        |
| 11 | Implementation of a mathematical model for the photochemical kinetics of a solid form active pharmaceutical ingredient. International Journal of Pharmaceutics, 2019, 566, 500-512.                                                                                | 5.2  | 3         |
| 12 | Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2019, 23, 1107-1117.                                                                                                                                       | 2.7  | 0         |
| 13 | Biphilic Organophosphorus-Catalyzed Intramolecular C <sub>sp<sup>2</sup></sub> –H Amination:<br>Evidence for a Nitrenoid in Catalytic Cadogan Cyclizations. Journal of the American Chemical Society,<br>2018, 140, 3103-3113.                                     | 13.7 | 103       |
| 14 | Intermolecular Reductive C–N Cross Coupling of Nitroarenes and Boronic Acids by<br>P <sup>III</sup> /P <sup>V</sup> â•O Catalysis. Journal of the American Chemical Society, 2018, 140,<br>15200-15205.                                                            | 13.7 | 126       |
| 15 | A Mechanistic Study on the Amidation of Esters Mediated by Sodium Formamide. Journal of Organic<br>Chemistry, 2012, 77, 775-779.                                                                                                                                   | 3.2  | 16        |
| 16 | Synthesis of ethyl 3-phenyl-4-(trifluoromethyl)isoxazole-5-carboxylate via regioselective dipolar<br>cycloaddition. Tetrahedron Letters, 2012, 53, 3994-3997.                                                                                                      | 1.4  | 15        |
| 17 | Kinetic and Mechanistic Insight into the Thermodynamic Degradation of Saxagliptin. Journal of<br>Organic Chemistry, 2011, 76, 10332-10337.                                                                                                                         | 3.2  | 13        |
| 18 | Model-Guided Design Space Development for a Drug Substance Manufacturing Process. Journal of<br>Pharmaceutical Innovation, 2011, 6, 181-192.                                                                                                                       | 2.4  | 31        |

ANTONIO RAMIREZ

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Lithium Diisopropylamide-Mediated Enolization:Â Catalysis by Hemilabile Ligands. Journal of the<br>American Chemical Society, 2006, 128, 10326-10336.                                                                                                            | 13.7 | 66        |
| 20 | Formation of Benzynes from 2,6-Dihaloaryllithiums:Â Mechanistic Basis of the Regioselectivity. Journal of the American Chemical Society, 2004, 126, 14700-14701.                                                                                                 | 13.7 | 31        |
| 21 | Hemilabile Ligands in Organolithium Chemistry:  Substituent Effects on Lithium Ion Chelation. Journal of the American Chemical Society, 2003, 125, 15376-15387.                                                                                                  | 13.7 | 50        |
| 22 | Current Progress in the Chemistry and Pharmacology of Akuammiline Alkaloids. Current Medicinal Chemistry, 2003, 10, 1891-1915.                                                                                                                                   | 2.4  | 214       |
| 23 | Hemi-Labile Ligands in Organolithium Chemistry: Rate Studies of the LDA-Mediated α- and β-Metalations of<br>Epoxides. Journal of the American Chemical Society, 1999, 121, 11114-11121.                                                                          | 13.7 | 51        |
| 24 | Development of a Process to a 4-Arylated 2-Methylisoquinolin-1(2 <i>H</i> )-one for the Treatment of<br>Solid Tumors: Lessons in Ortho-Bromination, Selective Solubility, Pd Deactivation, and Form Control.<br>Organic Process Research and Development, 0, , . | 2.7  | 1         |
| 25 | Kinetic and Thermodynamic Considerations in the Rh-Catalyzed Enantioselective Hydrogenation of 2-Pyridyl-Substituted Alkenes. ACS Catalysis, 0, , 5961-5969.                                                                                                     | 11.2 | 2         |