Eric C Schirmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8442625/publications.pdf

Version: 2024-02-01

89 5,081 35 68
papers citations h-index g-index

97 97 97 4963
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Genomic loci mispositioning in Tmem120a knockout mice yields latent lipodystrophy. Nature Communications, 2022, 13, 321.	12.8	24
2	Chemical Interrogation of Nuclear Size Identifies Compounds with Cancer Cell Line-Specific Effects on Migration and Invasion. ACS Chemical Biology, 2022, 17, 680-700.	3.4	12
3	STING nuclear partners contribute to innate immune signaling responses. IScience, 2021, 24, 103055.	4.1	22
4	A multistage sequencing strategy pinpoints novel candidate alleles for Emery-Dreifuss muscular dystrophy and supports gene misregulation as its pathomechanism. EBioMedicine, 2020, 51, 102587.	6.1	40
5	Nucleoplasmic signals promote directed transmembrane protein import simultaneously via multiple channels of nuclear pores. Nature Communications, 2020, 11, 2184.	12.8	22
6	Tm7sf2 Disruption Alters Radial Gene Positioning in Mouse Liver Leading to Metabolic Defects and Diabetes Characteristics. Frontiers in Cell and Developmental Biology, 2020, 8, 592573.	3.7	4
7	The NEMP family supports metazoan fertility and nuclear envelope stiffness. Science Advances, 2020, 6, eabb4591.	10.3	11
8	Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity. Nature Communications, 2019, 10, 3056.	12.8	41
9	Casting a Wider Net: Differentiating between Inner Nuclear Envelope and Outer Nuclear Envelope Transmembrane Proteins. International Journal of Molecular Sciences, 2019, 20, 5248.	4.1	19
10	The cell-wide web coordinates cellular processes by directing site-specific Ca2+ flux across cytoplasmic nanocourses. Nature Communications, 2019, 10, 2299.	12.8	14
11	Host Vesicle Fusion Protein VAPB Contributes to the Nuclear Egress Stage of Herpes Simplex Virus Type-1 (HSV-1) Replication. Cells, 2019, 8, 120.	4.1	13
12	Spatial Genome Organization: From Development to Disease. Frontiers in Cell and Developmental Biology, 2019, 7, 18.	3.7	23
13	Optimization of DamID for use in primary cultures of mouse hepatocytes. Methods, 2019, 157, 88-99.	3.8	10
14	Telomere elongation through hTERT immortalization leads to chromosome repositioning in control cells and genomic instability in Hutchinsonâ€Gilford progeria syndrome fibroblasts, expressing a novel SUN1 isoform. Genes Chromosomes and Cancer, 2019, 58, 341-356.	2.8	27
15	Spatial Organization of the Nucleus Compartmentalizes and Regulates the Genome. , 2018, , 1-34.		O
16	Navigating the Nuclear Envelope: One or Multiple Transport Mechanisms for Integral Membrane Proteins?. Nucleic Acids and Molecular Biology, 2018, , 151-177.	0.2	0
17	Analysis of RNA-Seq datasets reveals enrichment of tissue-specific splice variants for nuclear envelope proteins. Nucleus, 2018, 9, 410-430.	2.2	10
18	Constrained release of lamina-associated enhancers and genes from the nuclear envelope during T-cell activation facilitates their association in chromosome compartments. Genome Research, 2017, 27, 1126-1138.	5. 5	97

#	Article	IF	Citations
19	Tissue-specific NETs alter genome organization and regulation even in a heterologous system. Nucleus, 2017, 8, 81-97.	2.2	35
20	Immunohistochemistry on a panel of Emery–Dreifuss muscular dystrophy samples reveals nuclear envelope proteins as inconsistent markers for pathology. Neuromuscular Disorders, 2017, 27, 338-351.	0.6	15
21	Mitotic post-translational modifications of histones promote chromatin compaction <i>in vitro</i> Open Biology, 2017, 7, 170076.	3.6	56
22	Breaking the scale: how disrupting the karyoplasmic ratio gives cancer cells an advantage for metastatic invasion. Biochemical Society Transactions, 2017, 45, 1333-1344.	3.4	10
23	Microinjection of Antibodies Targeting the Lamin A/C Histone-Binding Site Blocks Mitotic Entry and Reveals Separate Chromatin Interactions with HP1, CenpB and PML. Cells, 2017, 6, 9.	4.1	8
24	Anchoring a Leviathan: How the Nuclear Membrane Tethers the Genome. Frontiers in Genetics, 2016, 7, 82.	2.3	53
25	The increasing relevance of nuclear envelope myopathies. Current Opinion in Neurology, 2016, 29, 651-661.	3.6	19
26	Isolation, Proteomic Analysis, and Microscopy Confirmation of the Liver Nuclear Envelope Proteome. Methods in Molecular Biology, 2016, 1411, 3-44.	0.9	7
27	The Application of DamID to Identify Peripheral Gene Sequences in Differentiated and Primary Cells. Methods in Molecular Biology, 2016, 1411, 359-386.	0.9	14
28	Tissue-Specific Gene Repositioning by Muscle Nuclear Membrane Proteins Enhances Repression of Critical Developmental Genes during Myogenesis. Molecular Cell, 2016, 62, 834-847.	9.7	165
29	Purification of Lamins and Soluble Fragments of NETs. Methods in Enzymology, 2016, 569, 79-100.	1.0	4
30	Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution. Nature Communications, 2016, 7, 12562.	12.8	33
31	Nucleoskeleton dynamics and functions in health and disease. Cell Health and Cytoskeleton, 2015, , 55.	0.7	2
32	Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery–Dreifuss muscular dystrophy. Neuromuscular Disorders, 2015, 25, 127-136.	0.6	21
33	Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Research, 2015, 25, 478-487.	5.5	118
34	LINC'ing form and function at the nuclear envelope. FEBS Letters, 2015, 589, 2514-2521.	2.8	65
35	Nuclear membrane diversity: underlying tissue-specific pathologies in disease?. Current Opinion in Cell Biology, 2015, 34, 101-112.	5.4	89
36	TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation. PLoS ONE, 2015, 10, e0127712.	2.5	60

#	Article	IF	CITATIONS
37	Lipids contribute to epigenetic control via chromatin structure and functions. ScienceOpen Research, 2015, .	0.6	4
38	Lipids contribute to epigenetic control via chromatin structure and functions. ScienceOpen Research, 2015, .	0.6	1
39	NET23/STING Promotes Chromatin Compaction from the Nuclear Envelope. PLoS ONE, 2014, 9, e111851.	2.5	23
40	Nuclear Envelope: Connecting Structural Genome Organization to Regulation of Gene Expression. Advances in Experimental Medicine and Biology, 2014, 773, 209-244.	1.6	26
41	NETs and Cell Cycle Regulation. Advances in Experimental Medicine and Biology, 2014, 773, 165-185.	1.6	3
42	The Nuclear Envelope and Cancer: A Diagnostic Perspective and Historical Overview. Advances in Experimental Medicine and Biology, 2014, 773, 5-26.	1.6	47
43	Whole-Genome Epigenomic Analysis in Multiple Myeloma Reveals DNA Hypermethylation of B-Cell Specific Enhancers. Blood, 2014, 124, 2032-2032.	1.4	0
44	Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery. Genome Biology, 2013, 14, R14.	9.6	116
45	Cancer biology and the nuclear envelope: A convoluted relationship. Seminars in Cancer Biology, 2013, 23, 125-137.	9.6	75
46	Tissue specificity in the nuclear envelope supports its functional complexity. Nucleus, 2013, 4, 460-477.	2.2	77
47	Considering Discrete Protein Pools when Measuring the Dynamics of Nuclear Membrane Proteins. Methods in Molecular Biology, 2013, 1042, 275-298.	0.9	3
48	The nuclear envelope proteome differs notably between tissues. Nucleus, 2012, 3, 552-564.	2.2	177
49	Herpes Simplex Virus ICP27 Protein Directly Interacts with the Nuclear Pore Complex through Nup62, Inhibiting Host Nucleocytoplasmic Transport Pathways. Journal of Biological Chemistry, 2012, 287, 12277-12292.	3.4	42
50	Many mechanisms, one entrance: membrane protein translocation into the nucleus. Cellular and Molecular Life Sciences, 2012, 69, 2205-2216.	5.4	46
51	Nuclear envelope influences on cell-cycle progression. Biochemical Society Transactions, 2011, 39, 1742-1746.	3.4	6
52	The nuclear envelope as a chromatin organizer. Nucleus, 2011, 2, 339-349.	2.2	92
53	System analysis shows distinct mechanisms and common principles of nuclear envelope protein dynamics. Journal of Cell Biology, 2011, 193, 109-123.	5.2	97
54	FG repeats facilitate integral protein trafficking to the inner nuclear membrane. Communicative and Integrative Biology, 2011, 4, 557-559.	1.4	8

#	Article	IF	CITATIONS
55	Several Novel Nuclear Envelope Transmembrane Proteins Identified in Skeletal Muscle Have Cytoskeletal Associations. Molecular and Cellular Proteomics, 2011, 10, M110.003129.	3.8	118
56	A Flow Cytometry-Based Screen of Nuclear Envelope Transmembrane Proteins Identifies NET4/Tmem53 as Involved in Stress-Dependent Cell Cycle Withdrawal. PLoS ONE, 2011, 6, e18762.	2.5	21
57	FG repeats facilitate integral protein trafficking to the inner nuclear membrane. Communicative and Integrative Biology, 2011, 4, 557-9.	1.4	6
58	The Leukocyte Nuclear Envelope Proteome Varies with Cell Activation and Contains Novel Transmembrane Proteins That Affect Genome Architecture. Molecular and Cellular Proteomics, 2010, 9, 2571-2585.	3.8	120
59	Nuclear envelope influences on genome organization. Biochemical Society Transactions, 2010, 38, 268-272.	3.4	7
60	Cell-specific and lamin-dependent targeting of novel transmembrane proteins in the nuclear envelope. Cellular and Molecular Life Sciences, 2010, 67, 1353-1369.	5.4	92
61	Comparative proteomic analyses of the nuclear envelope and pore complex suggests a wide range of heretofore unexpected functions. Journal of Proteomics, 2009, 72, 56-70.	2.4	24
62	Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation. Biochemical and Biophysical Research Communications, 2009, 389, 279-283.	2.1	3
63	Use of Sequential Chemical Extractions to Purify Nuclear Membrane Proteins for Proteomics Identification. Methods in Molecular Biology, 2009, 528, 201-225.	0.9	20
64	The epigenetics of nuclear envelope organization and disease. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 647, 112-121.	1.0	13
65	Inner nuclear membrane protein transport is mediated by multiple mechanisms. Biochemical Society Transactions, 2008, 36, 1373-1377.	3.4	34
66	Identification of Novel Integral Membrane Proteins of the Nuclear Envelope with Potential Disease Links Using Subtractive Proteomics. Novartis Foundation Symposium, 2008, , 63-80.	1.1	11
67	Subcellular Fractionation and Proteomics of Nuclear Envelopes. Methods in Molecular Biology, 2008, 432, 117-137.	0.9	16
68	Purification of Nuclei and Preparation of Nuclear Envelopes from Skeletal Muscle. Methods in Molecular Biology, 2008, 463, 23-41.	0.9	21
69	Proteins that associate with lamins: Many faces, many functions. Experimental Cell Research, 2007, 313, 2167-2179.	2.6	159
70	Organelle Proteome Variation Among Different Cell Types: Lessons from Nuclear Membrane Proteins., 2007, 43, 51-76.		14
71	Guilt by Association. Molecular and Cellular Proteomics, 2006, 5, 1865-1875.	3.8	27
72	The nuclear membrane proteome: extending the envelope. Trends in Biochemical Sciences, 2005, 30, 551-558.	7.5	125

#	Article	IF	CITATIONS
73	The apparent absence of lamin B1 and emerin in many tissue nuclei is due to epitope masking. Journal of Molecular Histology, 2005, 36, 337-344.	2.2	45
74	Identification of novel integral membrane proteins of the nuclear envelope with potential disease links using subtractive proteomics. Novartis Foundation Symposium, 2005, 264, 63-76; discussion 76-80, 227-30.	1.1	7
75	Dominant Gain-of-Function Mutations in Hsp104p Reveal Crucial Roles for the Middle Region. Molecular Biology of the Cell, 2004, 15, 2061-2072.	2.1	106
76	Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore. Journal of Cell Biology, 2004, 167, 1051-1062.	5.2	131
77	The Stability of the Nuclear Lamina Polymer Changes with the Composition of Lamin Subtypes According to Their Individual Binding Strengths. Journal of Biological Chemistry, 2004, 279, 42811-42817.	3.4	74
78	Nuclear Membrane Proteins with Potential Disease Links Found by Subtractive Proteomics. Science, 2003, 301, 1380-1382.	12.6	604
79	MudPIT: A powerful proteomics tool for discovery. Discovery Medicine, 2003, 3, 38-9.	0.5	66
80	Organellar proteomics: the prizes and pitfalls of opening the nuclear envelope. Genome Biology, 2002, 3, reviews1008.1.	9.6	13
81	Defining a Pathway of Communication from the C-Terminal Peptide Binding Domain to the N-Terminal ATPase Domain in a AAA Protein. Molecular Cell, 2002, 9, 751-760.	9.7	120
82	Involvement of the Lamin Rod Domain in Heterotypic Lamin Interactions Important for Nuclear Organization. Journal of Cell Biology, 2001, 153, 479-490.	5.2	128
83	Nup50, a Nucleoplasmically Oriented Nucleoporin with a Role in Nuclear Protein Export. Molecular and Cellular Biology, 2000, 20, 5619-5630.	2.3	118
84	[34] Purification and properties of Hsp104 from yeast. Methods in Enzymology, 1998, 290, 430-444.	1.0	17
85	The ATPase Activity of Hsp104, Effects of Environmental Conditions and Mutations. Journal of Biological Chemistry, 1998, 273, 15546-15552.	3.4	113
86	HSP100/Clp proteins: a common mechanism explains diverse functions. Trends in Biochemical Sciences, 1996, 21, 289-296.	7.5	585
87	An Arabidopsis Heat Shock Protein Complements a Thermotolerance Defect in Yeast. Plant Cell, 1994, 6, 1899.	6.6	36
88	The replication of viral and cellular DNA in human herpesvirus 6-infected cells. Virology, 1990, 175, 199-210.	2.4	65
89	Nuclear organization and dynamics: The final Frontier for understanding genome regulation. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	0