Johannes B Huppa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8442475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2-Specific Antibody (Ab) Levels and the Kinetic of Ab Decline Determine Ab Persistence Over 1 Year. Frontiers in Medicine, 2022, 9, 822316.	2.6	2
2	Time 2EVOLVE: predicting efficacy of engineered T-cells – how far is the bench from the bedside?. , 2022, 10, e003487.		13
3	Mechanosurveillance: Tiptoeing T Cells. Frontiers in Immunology, 2022, 13, .	4.8	9
4	The SPPL3-Defined Glycosphingolipid Repertoire Orchestrates HLA Class I-Mediated Immune Responses. Immunity, 2021, 54, 132-150.e9.	14.3	52
5	Functionalized Bead Assay to Measure Three-dimensional Traction Forces during T-cell Activation. Nano Letters, 2021, 21, 507-514.	9.1	28
6	DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	63
7	DNA Origami Demonstrate the Unique Stimulatory Power of Single pMHCs as T-Cell Antigens. Biophysical Journal, 2021, 120, 330a.	0.5	1
8	Comprehensive Fluorophore Blinking Analysis Platform as a Prerequisite for Cluster Detection via Photoavticated Localization Microscopy. Biophysical Journal, 2021, 120, 182a.	0.5	0
9	SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8 ⁺ T cell responses. Science Immunology, 2021, 6, .	11.9	143
10	Adjuvants and Vaccines Used in Allergen-Specific Immunotherapy Induce Neutrophil Extracellular Traps. Vaccines, 2021, 9, 321.	4.4	7
11	Temporal analysis of T-cell receptor-imposed forces via quantitative single molecule FRET measurements. Nature Communications, 2021, 12, 2502.	12.8	50
12	Histone deacetylase 1 controls CD4+ T cell trafficking in autoinflammatory diseases. Journal of Autoimmunity, 2021, 119, 102610.	6.5	7
13	Characterization of CD8 T Cell-Mediated Mutations in the Immunodominant Epitope GP33-41 of Lymphocytic Choriomeningitis Virus. Frontiers in Immunology, 2021, 12, 638485.	4.8	1
14	Strategies for the Site-Specific Decoration of DNA Origami Nanostructures with Functionally Intact Proteins. ACS Nano, 2021, 15, 15057-15068.	14.6	18
15	A Multimodal Platform for Simultaneous T-cell Imaging, Defined Activation, and Mechanobiological Characterization. Cells, 2021, 10, 235.	4.1	4
16	Prospective Tracking of Donor-Reactive T-Cell Clones in the Circulation and Rejecting Human Kidney Allografts. Frontiers in Immunology, 2021, 12, 750005.	4.8	20
17	Three-Dimensional Single Molecule Localization Microscopy Reveals the Topography of the Immunological Synapse at Isotropic Precision below 15 nm. Nano Letters, 2021, 21, 9247-9255.	9.1	13
18	Automated Two-dimensional Spatiotemporal Analysis of Mobile Single-molecule FRET Probes. Journal of Visualized Experiments, 2021, , .	0.3	0

JOHANNES B HUPPA

#	Article	IF	CITATIONS
19	Unscrambling fluorophore blinking for comprehensive cluster detection via photoactivated localization microscopy. Nature Communications, 2020, 11, 4993.	12.8	24
20	Engineering AvidCARs for combinatorial antigen recognition and reversible control of CAR function. Nature Communications, 2020, 11, 4166.	12.8	53
21	TIMâ€3 and CEACAM1 do not interact in <i>cis</i> and in <i>trans</i> . European Journal of Immunology, 2020, 50, 1126-1141.	2.9	25
22	Getting CD19 Into Shape: Expression of Natively Folded "Difficult-to- Express―CD19 for Staining and Stimulation of CAR-T Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 49.	4.1	9
23	The cytoskeletal regulator HEM1 governs B cell development and prevents autoimmunity. Science Immunology, 2020, 5, .	11.9	37
24	A FRET-based Sensor for Probing Forces Exerted by Single T Cell Receptors on Their Ligands. Biophysical Journal, 2020, 118, 252a.	0.5	0
25	Inefficient CAR-proximal signaling blunts antigen sensitivity. Nature Immunology, 2020, 21, 848-856.	14.5	83
26	Spatial Requirements for T-Cell Receptor Triggering Probed via Functionalized DNA Origami Platforms. Biophysical Journal, 2020, 118, 245a.	0.5	4
27	How drag sharpens a T cell's view on antigen. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16669-16671.	7.1	11
28	Homo- and Heteroassociations Drive Activation ofÂErbB3. Biophysical Journal, 2019, 117, 1935-1947.	0.5	11
29	Nanoscale Organization and Mobility of Ligands Direct T Cell Activation. Biophysical Journal, 2019, 116, 530a.	0.5	1
30	Comprehensive Fluorophore Blinking Analysis Platform as a Prerequisite for Palm Data Interpretation. Biophysical Journal, 2019, 116, 133a.	0.5	0
31	Monomeric TCRs drive T cell antigen recognition. Nature Immunology, 2018, 19, 487-496.	14.5	111
32	Superresolution Microscopy of the T Cell Receptor in the Immunological Synapse. Biophysical Journal, 2018, 114, 535a.	0.5	0
33	Probing Lipid Interactions of the T-cell Receptor Complex: A Micropatterning Approach. Biophysical Journal, 2018, 114, 108a.	0.5	0
34	Monomeric TCR-CD3 Complexes Drive T-Cell Antigen Recognition. Biophysical Journal, 2018, 114, 108a.	0.5	2
35	Extracellular Purine Metabolism Is the Switchboard of Immunosuppressive Macrophages and a Novel Target to Treat Diseases With Macrophage Imbalances. Frontiers in Immunology, 2018, 9, 852. 	4.8	39
36	TCRs are randomly distributed on the plasma membrane of resting antigen-experienced T cells. Nature Immunology, 2018, 19, 821-827.	14.5	103

JOHANNES B HUPPA

#	Article	IF	CITATIONS
37	Mutations affecting the actin regulator WD repeat–containing protein 1 lead to aberrant lymphoid immunity. Journal of Allergy and Clinical Immunology, 2018, 142, 1589-1604.e11.	2.9	64
38	Förster Resonance Energy Transfer to Study TCR-pMHC Interactions in the Immunological Synapse. Methods in Molecular Biology, 2017, 1584, 207-229.	0.9	5
39	Characterization of PS-CFP2 for Reliable Super-Resolution Microscopy. Biophysical Journal, 2017, 112, 143a.	0.5	0
40	Measurement of Forces in the Immunological Synapse. Biophysical Journal, 2017, 112, 532a.	0.5	0
41	A cellular platform for the evaluation of immune checkpoint molecules. Oncotarget, 2017, 8, 64892-64906.	1.8	48
42	Visualization of Mechanical Forces within the Immunological Synapse. Biophysical Journal, 2016, 110, 94a.	0.5	0
43	RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nature Immunology, 2016, 17, 1352-1360.	14.5	115
44	Assessment of costimulation and coinhibition in a triple parameter T cell reporter line: Simultaneous measurement of NF-κB, NFAT and AP-1. Journal of Immunological Methods, 2016, 430, 10-20.	1.4	140
45	Measuring TCR-pMHC Binding In Situ using a FRET-based Microscopy Assay. Journal of Visualized Experiments, 2015, , e53157.	0.3	7
46	Single Molecule Fluorescence Microscopy on Planar Supported Bilayers. Journal of Visualized Experiments, 2015, , e53158.	0.3	7
47	Rapid multiplex analysis of lipid raft components with single-cell resolution. Science Signaling, 2015, 8, rs11.	3.6	9
48	The Interdisciplinary Science of T-cell Recognition. Advances in Immunology, 2013, 119, 1-50.	2.2	43
49	Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nature Immunology, 2013, 14, 262-270.	14.5	188
50	Techniques for Direct Imaging of Nanoplatforms in the Live Cell Plasma Membrane. Biophysical Journal, 2013, 104, 245a-246a.	0.5	0
51	Improved Peptide-Discrimination by Force-Induced Unbinding of T Cell Receptor from Peptide-MHC. Biophysical Journal, 2013, 104, 380a.	0.5	2
52	Determination of Interaction Kinetics between the T Cell Receptor and Peptide-Loaded MHC Class II via Single-Molecule Diffusion Measurements. Biophysical Journal, 2012, 103, L17-L19.	0.5	36
53	Photocrosslinkable pMHC monomers stain T cells specifically and cause ligand-bound TCRs to be 'preferentially' transported to the cSMAC. Nature Immunology, 2012, 13, 674-680.	14.5	44
54	TCR–peptide–MHC interactions in situ show accelerated kinetics and increased affinity. Nature, 2010, 463, 963-967.	27.8	449

JOHANNES B HUPPA

#	Article	IF	CITATIONS
55	TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nature Immunology, 2010, 11, 90-96.	14.5	571
56	Evidence for a functional sidedness to the $\hat{I}\pm\hat{I}^2$ TCR. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5094-5099.	7.1	69
57	Functional Development of the T Cell Receptor for Antigen. Progress in Molecular Biology and Translational Science, 2010, 92, 65-100.	1.7	10
58	T Cells as a Self-Referential, Sensory Organ. Annual Review of Immunology, 2007, 25, 681-695.	21.8	141
59	Agonist/endogenous peptide–MHC heterodimers drive T cell activation and sensitivity. Nature, 2005, 434, 238-243.	27.8	313
60	Quantitative Imaging of Lymphocyte Membrane Protein Reorganization and Signaling. Biophysical Journal, 2005, 88, 579-589.	0.5	6
61	Response to 'Tracking synapse-associated TCRs'. Nature Immunology, 2004, 5, 117-117.	14.5	0
62	T cell killing does not require the formation of a stable mature immunological synapse. Nature Immunology, 2004, 5, 524-530.	14.5	496
63	CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nature Immunology, 2004, 5, 791-799.	14.5	228
64	Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nature Immunology, 2003, 4, 749-755.	14.5	366
65	T-cell-antigen recognition and the immunological synapse. Nature Reviews Immunology, 2003, 3, 973-983.	22.7	506
66	Dynamics of Cell Surface Molecules During T Cell Recognition. Annual Review of Biochemistry, 2003, 72, 717-742.	11.1	105
67	Linking molecular and cellular events in T-cell activation and synapse formation. Seminars in Immunology, 2003, 15, 307-315.	5.6	49
68	Linker for Activation of T Cells, ζ-Associated Protein-70, and Src Homology 2 Domain-Containing Leukocyte Protein-76 are Required for TCR-Induced Microtubule-Organizing Center Polarization. Journal of Immunology, 2003, 171, 860-866.	0.8	98
69	The e S-Sence of -SH in the ER. Cell, 1998, 92, 145-148.	28.9	63
70	Dislocation of Type I Membrane Proteins from the ER to the Cytosol Is Sensitive to Changes in Redox Potential. Journal of Cell Biology, 1998, 142, 365-376.	5.2	122
71	In Vitro Translation and Assembly of a Complete T Cell Receptor–CD3 Complex. Journal of Experimental Medicine, 1997, 186, 393-403.	8.5	95
72	The α Chain of the T Cell Antigen Receptor Is Degraded in the Cytosol. Immunity, 1997, 7, 113-122.	14.3	163