David G Calatayud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8441774/publications.pdf

Version: 2024-02-01

		471509	580821
59	808	17	25
papers	citations	h-index	g-index
61	61	61	1178
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Thin film processing of multiferroic BiFeO3: From sophistication to simplicity. A review. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, 61, 708-732.	1.9	7
2	Ultrafast Macroscopic Assembly of High-Strength Graphene Oxide Membranes by Implanting an Interlaminar Superhydrophilic Aisle. ACS Nano, 2022, 16, 3934-3942.	14.6	13
3	Biocompatible Probes Based on Rare-Earth Doped Strontium Aluminates with Long-Lasting Phosphorescent Properties for In Vitro Optical IMAGING. International Journal of Molecular Sciences, 2022, 23, 3410.	4.1	10
4	Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Frontiers in Chemistry, 2022, 10, 830133.	3.6	4
5	Structural variety, fluorescence and photocatalytic activity of dissymmetric thiosemicarbazone complexes. Polyhedron, 2022, 223, 115945.	2.2	6
6	Peptide-driven bio-assisted removal of metal oxide nanoparticles from an aqueous suspension: A novel strategy for water remediation. Journal of Cleaner Production, 2021, 285, 124852.	9.3	2
7	A Graphene-Assembled Film Based MIMO Antenna Array with High Isolation for 5G Wireless Communication. Applied Sciences (Switzerland), 2021, 11, 2382.	2.5	14
8	Hybrid Hierarchical Heterostructures of Nanoceramic Phosphors as Imaging Agents for Multiplexing and Living Cancer Cells Translocation. ACS Applied Bio Materials, 2021, 4, 4105-4118.	4.6	7
9	Self-Assembled Materials Incorporating Functional Porphyrins and Carbon Nanoplatforms as Building Blocks for Photovoltaic Energy Applications. Frontiers in Chemistry, 2021, 9, 727574.	3.6	3
10	Amphiphilic engineering of reduced graphene oxides using a carbon nitride coating for superior removal of organic pollutants from wastewater. Carbon, 2021, 184, 479-491.	10.3	7
11	Two-step doping approach releasing the piezoelectric response of BiFeO3 bulk ceramics co-doped with titanium and samarium. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2020, 59, 81-87.	1.9	2
12	Proteomic investigation on bio-corona of Au, Ag and Fe nanoparticles for the discovery of triple negative breast cancer serum protein biomarkers. Journal of Proteomics, 2020, 212, 103581.	2.4	41
13	Promoting mercury removal from desulfurization slurry via S-doped carbon nitride/graphene oxide 3D hierarchical framework. Separation and Purification Technology, 2020, 239, 116515.	7.9	35
14	Radio- and nano-chemistry of aqueous Ga(<scp>iii</scp>) ions anchored onto graphene oxide-modified complexes. Nanoscale, 2020, 12, 6603-6608.	5.6	11
15	Shedding Light Onto the Nature of Iron Decorated Graphene and Graphite Oxide Nanohybrids for CO ₂ Conversion at Atmospheric Pressure. ChemistryOpen, 2020, 9, 242-252.	1.9	4
16	Nanostructure stabilization by low-temperature dopant pinning in multiferroic BiFeO ₃ -based thin films produced by aqueous chemical solution deposition. Journal of Materials Chemistry C, 2020, 8, 4234-4245.	5.5	12
17	Highly photoactive TiO2 microspheres for photocatalytic production of hydrogen. International Journal of Hydrogen Energy, 2019, 44, 24653-24666.	7.1	18
18	Tailoring the visible light photoactivity of un-doped defective TiO2 anatase nanoparticles through a simple two-step solvothermal process. Nanotechnology, 2019, 31, 045603.	2.6	4

#	Article	IF	Citations
19	A practical graphitic carbon nitride (g-C3N4) based fluorescence sensor for the competitive detection of trithiocyanuric acid and mercury ions. Dyes and Pigments, 2019, 170, 107476.	3.7	28
20	Directed Molecular Stacking for Engineered Fluorescent Threeâ€Dimensional Reduced Graphene Oxide and Coronene Frameworks. ChemistryOpen, 2019, 8, 1383-1398.	1.9	5
21	Encapsulation of Cadmium Selenide Nanocrystals in Biocompatible Nanotubes: DFT Calculations, Xâ€ray Diffraction Investigations, and Confocal Fluorescence Imaging. ChemistryOpen, 2018, 7, 144-158.	1.9	15
22	Synthesis, Radiolabelling and In Vitro Imaging of Multifunctional Nanoceramics. ChemNanoMat, 2018, 4, 361-372.	2.8	13
23	Fluorescence detection and removal of copper from water using a biobased and biodegradable 2D soft material. Chemical Communications, 2018, 54, 184-187.	4.1	53
24	Titanium doping of BiFeO ₃ ceramics and identification of minor phases by Raman spectroscopy. Journal of Raman Spectroscopy, 2017, 48, 884-890.	2.5	8
25	Fluorescenceâ€Lifetime Imaging and Superâ€Resolution Microscopies Shed Light on the Directed―and Selfâ€Assembly of Functional Porphyrins onto Carbon Nanotubes and Flat Surfaces. Chemistry - A European Journal, 2017, 23, 9772-9789.	3.3	16
26	Ga-doped ZnO self-assembled nanostructures obtained by microwave-assisted hydrothermal synthesis: Effect on morphology and optical properties. Journal of Alloys and Compounds, 2017, 722, 920-927.	5.5	14
27	Carbon Nanotubes and Related Nanohybrids Incorporating Inorganic Transition Metal Compounds and Radioactive Species as Synthetic Scaffolds for Nanomedicine Design. , 2017, , 245-327.		9
28	Behavior of Supramolecular Assemblies of Radiometal-Filled and Fluorescent Carbon Nanocapsules InâVitro and InâVivo. CheM, 2017, 3, 437-460.	11.7	22
29	Frontispiece: Fluorescenceâ€Lifetime Imaging and Superâ€Resolution Microscopies Shed Light on the Directed―and Selfâ€Assembly of Functional Porphyrins onto Carbon Nanotubes and Flat Surfaces. Chemistry - A European Journal, 2017, 23, .	3.3	0
30	Labeling of Graphene, Graphene Oxides, and of Their Congeners. Advances in Inorganic Chemistry, 2016, 68, 397-440.	1.0	6
31	Thermally Reduced Graphene Oxide Nanohybrids of Chiral Functional Naphthalenediimides for Prostate Cancer Cells Bioimaging. Advanced Functional Materials, 2016, 26, 5641-5657.	14.9	31
32	Applications of "Hot―and "Cold―Bis(thiosemicarbazonato) Metal Complexes in Multimodal Imaging. Chemical Record, 2016, 16, 1380-1397.	5.8	18
33	Investigations into the reactivity of lithium indenyl with alpha diimines with chlorinated backbones and formation of related functional ligands and metal complexes. Polyhedron, 2016, 119, 532-547.	2.2	1
34	Surface Modifications: Interactions between an Aryl Thioacetateâ€Functionalized Zn(II) Porphyrin and Graphene Oxide (Adv. Funct. Mater. 5/2016). Advanced Functional Materials, 2016, 26, 634-634.	14.9	1
35	The Reactivity of Diphenyllead(IV) Dichloride with Dissymmetric Thiosemicarbazone Ligands: Obtaining Monomers, Coordination Polymers, and an Organoplumboxane. European Journal of Inorganic Chemistry, 2016, 2016, 1044-1053.	2.0	4
36	Interactions between an Aryl Thioacetateâ€Functionalized Zn(II) Porphyrin and Graphene Oxide. Advanced Functional Materials, 2016, 26, 687-697.	14.9	17

#	Article	IF	CITATIONS
37	Controlling the morphology of TiO2 nanocrystals with different capping agents. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2015, 54, 159-165.	1.9	25
38	Metallic nanoparticles as synthetic building blocks for cancer diagnostics: from materials design to molecular imaging applications. Journal of Materials Chemistry B, 2015, 3, 5657-5672.	5.8	37
39	Zinc and mercury complexes of benzil bis(4-methyl-3-thiosemicarbazone). Polyhedron, 2015, 101, 133-138.	2.2	10
40	Synthesis and Characterization of Blue Faceted Anatase Nanoparticles through Extensive Fluorine Lattice Doping. Journal of Physical Chemistry C, 2015, 119, 21243-21250.	3.1	27
41	Influence of nickel in the hydrogen production activity of TiO2. Applied Catalysis B: Environmental, 2014, 152-153, 192-201.	20.2	39
42	Progressive degradation of high voltage ZnO commercial varistors upon Fe2O3 doping. Ceramics International, 2014, 40, 13395-13400.	4.8	8
43	Microwave-induced fast crystallization of amorphous hierarchical anatase microspheres. Nanoscale Research Letters, 2014, 9, 273.	5.7	12
44	Facile synthesis of hierarchical anatase microspheres. Journal of Alloys and Compounds, 2013, 551, 481-484.	5 . 5	4
45	Highly photoactive anatase nanoparticles obtained using trifluoroacetic acid as an electron scavenger and morphological control agent. Journal of Materials Chemistry A, 2013, 1, 14358.	10.3	13
46	Synthesis of metastable Bi6Ti5WO22 phase by the mechanochemical method. Materials Letters, 2013, 94, 58-60.	2.6	4
47	Synthesis of hybrid ligands derived from benzil, thiosemicarbazide and heteroaromatic hydrazides and their reactivity with group 12 metals. Polyhedron, 2013, 54, 39-46.	2.2	10
48	A Fluorescent Dissymmetric Thiosemicarbazone Ligand Containing a Hydrazonequinoline Arm and Its Complexes with Cadmium and Mercury. European Journal of Inorganic Chemistry, 2013, 2013, 80-90.	2.0	20
49	Soft solution fluorine-free synthesis of anatase nanoparticles with tailored morphology. Ceramics International, 2013, 39, 1195-1202.	4.8	21
50	Complexes of group 12 metals containing a hybrid thiosemicarbazone-pyridylhydrazone ligand. Inorganica Chimica Acta, 2012, 381, 150-161.	2.4	22
51	Microstructure Engineering to Drastically Reduce the Leakage Currents of High Voltage <pre><scp><scp>ZnO3043-3049.</scp></scp></pre>	3.8	6
52	Preparación de Materiales Fotocatalizadores Basados en Bi ₄ Ti ₃ O ₁₂ Dopados con Metales de Transición. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2012, 51, 55-60.	1.9	7
53	Reactivity of benzil bis(4-methyl-3-thiosemicarbazone) with cadmium nitrate. Crystal structure of [Cd(LMe2H4)(NO3)2][Cd(LMe2H4)(NO3)(H2O)]NO3·H2O. Polyhedron, 2008, 27, 2277-2284.	2.2	10
54	Unexpected differences in the reactivity between MPh2Cl2 (M=Pb or Sn) and benzil bis(thiosemicarbazone). X-ray crystal structure of benzil bis(thiosemicarbazonate)lead(II). Polyhedron, 2008, 27, 2507-2512.	2.2	13

#	Article	IF	CITATIONS
55	Diphenyllead(IV) Chloride Complexes with Benzilthiosemicarbazones. The First Bis(Thiosemicarbazone) Derivatives. Inorganic Chemistry, 2007, 46, 10434-10443.	4.0	24
56	Facile and Selective Synthesis of 4â€Methyl―and 4â€Phenylthiosemicarbazide (= <i>N</i> â€Methyl―and) Tj E Chimica Acta, 2007, 90, 2201-2216.	TQq0 0 0 1.6	rgBT /Overloc 6
57	Tin(IV) Complexes with Thiosemicarbazide and 4â€Methylâ€3â€thiosemicarbazide Derivatives. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 1925-1931.	1.2	3
58	The First Complex of Benzilbis(thiosemicarbazone) acting as Bridging Ligand only through the Sulfur Atom. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 2471-2474.	1.2	5
59	Structural Trends in Divalent Benzil Bis(thiosemicarbazone) Complexes. European Journal of Inorganic Chemistry, 2005, 2005, 4401-4409.	2.0	19