Xingchu Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8441363/publications.pdf

Version: 2024-02-01

394421 552781 68 908 19 26 citations g-index h-index papers 73 73 73 793 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and optimization of purification process of sinomenine hydrochloride. Chinese Journal of Chemical Engineering, 2023, 55, 63-72.	3.5	1
2	Liquid chromatographic study of two structural isomeric pentacyclic triterpenes on reversed-phase stationary phase with hydroxypropyl- \hat{l}^2 -cyclodextrin as mobile phase additive. Journal of Pharmaceutical and Biomedical Analysis, 2022, 207, 114420.	2.8	5
3	Establishing a chromatographic fingerprint using tandem UV/charged aerosol detection and similarity analysis for Shengmai capsule: A novel method for natural product quality control. Phytochemical Analysis, 2022, 33, 460-472.	2.4	1
4	Process optimization for the synthesis of functionalized Au@AgNPs for specific detection of Hg ²⁺ based on quality by design (QbD). RSC Advances, 2022, 12, 9121-9129.	3 . 6	1
5	Optimization of Steam Distillation Process and Chemical Constituents of Volatile Oil from Angelicaesinensis Radix. Separations, 2022, 9, 137.	2.4	3
6	Determination of inhibitory activity of Salvia miltiorrhiza extracts on xanthine oxidase with a paper-based analytical device. Journal of Pharmaceutical Analysis, 2021, 11, 603-610.	5 . 3	7
7	The development of Fructus corni quality standard considering the effects of processing. Chinese Journal of Chemical Engineering, 2021, 29, 77-84.	3.5	3
8	Establishment and validation of the quantitative analysis of multiâ€components by single marker for the quality control of Qishen Yiqi dripping pills by highâ€performance liquid chromatography with charged aerosol detection. Phytochemical Analysis, 2021, 32, 942-956.	2.4	13
9	Determination of the Dissociation Constants of 16 Active Ingredients in Medicinal Herbs Using a Liquid–Liquid Equilibrium Method. Separations, 2021, 8, 49.	2.4	5
10	Development of an HPLC–MS method for the determination of four terpene trilactones in <scp><i>Ginkgo biloba</i></scp> leaf extract via quality by design. Biomedical Chromatography, 2021, 35, e5170.	1.7	10
11	Design Space Calculation and Continuous Improvement Considering a Noise Parameter: A Case Study of Ethanol Precipitation Process Optimization for Carthami Flos Extract. Separations, 2021, 8, 74.	2.4	5
12	The Influences of Concentrate Extract Properties and Ethanol Addition Amount on the Ethanol Precipitation Process of Salvia Miltiorrhiza. Pharmacology & Pharmacy, 2021, 12, 191-207.	0.7	0
13	An Index for Quantitative Evaluation of the Mixing in Ethanol Precipitation of Traditional Chinese Medicine. Separations, 2021, 8, 181.	2.4	O
14	Research Progress on Quality Control Methods for Xiaochaihu Preparations. Separations, 2021, 8, 199.	2.4	3
15	Ethanol precipitation of Codonopsis Radix concentrate with a membrane dispersion micromixer. Journal of Cleaner Production, 2020, 251, 119633.	9.3	11
16	Critical pharmaceutical process identification considering chemical composition, biological activity, and batch-to-batch consistency: A case study of notoginseng total saponins. Chinese Herbal Medicines, 2020, 12, 29-35.	3.0	2
17	Liquid-liquid chromatography in sample pretreatment for quantitative analysis of trace component in traditional Chinese medicines by conventional liquid chromatography. Journal of Chromatography A, 2020, 1619, 460917.	3.7	8
18	Research progress on the ethanol precipitation process of traditional Chinese medicine. Chinese Medicine, 2020, 15, 84.	4.0	25

#	Article	IF	CITATIONS
19	Optimization of membrane dispersion ethanol precipitation process with a set of temperature control improved equipment. Scientific Reports, 2020, 10, 19010.	3.3	5
20	Research Progress on the Separation of Alkaloids from Chinese Medicines by Column Chromatography. Advances in Chemical Engineering and Science, 2020, 10, 358-377.	0.5	1
21	Sinomenine Purification by Continuous Liquid-Liquid Extraction Process with Centrifugal Extractors. Advances in Chemical Engineering and Science, 2020, 10, 171-180.	0.5	3
22	Determination of Critical Influencing Factor on pH Stability of Yuxingcao Injection. Pharmacology & Pharmacy, 2020, 11, 188-195.	0.7	0
23	Enantioseparation of three isomeric \hat{l} ±-(chlorophenyl)propanoic acid by countercurrent chromatography and investigation of chlorine substituent through characterization of inclusion interaction. Journal of Chromatography A, 2019, 1604, 460471.	3.7	7
24	The development of an herbal material quality control strategy considering the effects of manufacturing processes. Chinese Medicine, 2019, 14, 38.	4.0	8
25	Fabrication of paper-based enzyme immobilized microarray by 3D-printing technique for screening α-glucosidase inhibitors in mulberry leaves and lotus leaves. Chinese Medicine, 2019, 14, 13.	4.0	11
26	Preparation of Salvianolic Acid B Disodium Salt Considering the Water Extract Quality Standard. Molecules, 2019, 24, 1269.	3.8	4
27	Establishing the chromatographic fingerprint of traditional Chinese medicine standard decoction based on quality by design approach: A case study of <i>Licorice</i> . Journal of Separation Science, 2019, 42, 1144-1154.	2.5	25
28	A novel quality by design approach for developing an HPLC method to analyze herbal extracts: A case study of sugar content analysis. PLoS ONE, 2018, 13, e0198515.	2.5	26
29	Chemical analysis, pharmacological activity and process optimization of the proportion of bilobalide and ginkgolides in Ginkgo biloba extract. Journal of Pharmaceutical and Biomedical Analysis, 2018, 160, 46-54.	2.8	20
30	Paper-based analytical devices prepared with polycaprolactone printing and their application in the activity determination of mulberry extracts. Journal of Pharmaceutical and Biomedical Analysis, 2018, 161, 28-34.	2.8	8
31	Modeling of degradation kinetics of Salvianolic acid B at different temperatures and pH values. Chinese Journal of Chemical Engineering, 2017, 25, 68-73.	3.5	7
32	Measurement and Correlation of Liquid–Liquid Equilibria for the Ternary Systems of Water + <scp>d</scp> -Fructose + 1-Butanol, Water + <scp>d</scp> -Glucose + 1-Butanol, and Water + <scp>d</scp> -Galactose + 1-Butanol at (288.2, 303.2 and 318.2) K. Journal of Chemical & Engineering Data, 2017, 62, 2392-2399.	1.9	3
33	Chromatographic elution process design space development for the purification of saponins in ⟨i>Panax notoginseng⟨ i> extract using a probabilityâ€based approach. Journal of Separation Science, 2016, 39, 306-315.	2.5	11
34	Development of an analytical method by defining a design space: a case study of saponin determination for Panax notoginseng extracts. Analytical Methods, 2016, 8, 2282-2289.	2.7	14
35	The determination of dissociation constants for active ingredients from herbal extracts using a liquid–liquid equilibrium method. Fluid Phase Equilibria, 2016, 409, 447-457.	2.5	6
36	Degradation Kinetics and Mechanism of Lithospermic Acid under Low Oxygen Condition Using Quantitative 1H NMR with HPLC-MS. PLoS ONE, 2016, 11, e0164421.	2.5	4

3

#	Article	IF	Citations
37	Process development for the decoloration of <i>Panax notoginseng</i> extracts: A design space approach. Journal of Separation Science, 2015, 38, 346-355.	2.5	15
38	Design Space Development for the Extraction Process of Danhong Injection Using a Monte Carlo Simulation Method. PLoS ONE, 2015, 10, e0128236.	2.5	14
39	Dependence of tablet brittleness on tensile strength and porosity. International Journal of Pharmaceutics, 2015, 493, 208-213.	5.2	32
40	A new tablet brittleness index. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 260-266.	4.3	55
41	Optimization of a chromatographic process for the purification of saponins in Panax notoginseng extract using a design space approach. Separation and Purification Technology, 2015, 154, 309-319.	7.9	11
42	Optimization of Panax notoginseng extraction process using a design space approach. Separation and Purification Technology, 2015, 141, 197-206.	7.9	21
43	Removing Tannins from Medicinal Plant Extracts Using an Alkaline Ethanol Precipitation Process: A Case Study of Danshen Injection. Molecules, 2014, 19, 18705-18720.	3.8	20
44	Optimization for the Ethanol Precipitation Process of Botanical Injection: Indicator Selection and Factor Influences. Separation Science and Technology, 2014, 49, 619-626.	2.5	8
45	Control the effects caused by noise parameter fluctuations to improve pharmaceutical process robustness: A case study of design space development for an ethanol precipitation process. Separation and Purification Technology, 2014, 132, 126-137.	7.9	19
46	Unit Operation Optimization for the Manufacturing of Botanical Injections Using a Design Space Approach: A Case Study of Water Precipitation. PLoS ONE, 2014, 9, e104493.	2.5	16
47	Optimization of the Ethanol Recycling Reflux Extraction Process for Saponins Using a Design Space Approach. PLoS ONE, 2014, 9, e114300.	2.5	24
48	Application of Quality by Design to the Process Development of Botanical Drug Products: A Case Study. AAPS PharmSciTech, 2013, 14, 277-286.	3.3	38
49	Analysis of urinary metabolites for breast cancer patients receiving chemotherapy by CE-MS coupled with on-line concentration. Clinical Biochemistry, 2013, 46, 1065-1073.	1.9	20
50	Quantitative 1H NMR method for hydrolytic kinetic investigation of salvianolic acid B. Journal of Pharmaceutical and Biomedical Analysis, 2013, 85, 28-32.	2.8	14
51	Separation characteristics of ethanol precipitation for the purification of the water extract of medicinal plants. Separation and Purification Technology, 2013, 107, 273-280.	7.9	29
52	Optimizing the Alcohol Precipitation of Danshen by Response Surface Methodology. Separation Science and Technology, 2013, 48, 977-983.	2.5	9
53	Multi-criteria optimization for ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae using response surface methodology, an activity-based approach. Journal of Separation Science, 2013, 36, 1861-1868.	2.5	8
54	Monitoring batch-to-batch reproducibility of liquid–liquid extraction process using in-line near-infrared spectroscopy combined with multivariate analysis. Journal of Pharmaceutical and Biomedical Analysis, 2012, 70, 178-187.	2.8	41

#	Article	IF	CITATIONS
55	Solubilities of Protocatechuic Aldehyde, Caffeic Acid, <scp>d</scp> -Galactose, and <scp>d</scp> -Raffinose Pentahydrate in Ethanol–Water Solutions. Journal of Chemical & Engineering Data, 2012, 57, 2018-2022.	1.9	24
56	Application of Multivariate Curve Resolution Method in the Quantitative Monitoring Transformation of Salvianolic Acid A Using Online UV Spectroscopy and Mass Spectroscopy. Industrial & Samp; Engineering Chemistry Research, 2012, 51, 3238-3245.	3.7	10
57	Solubility of Xylose, Mannose, Maltose Monohydrate, and Trehalose Dihydrate in Ethanol–Water Solutions. Journal of Chemical & Engineering Data, 2012, 57, 3264-3269.	1.9	38
58	Comparison of Two Separation Technologies Applied in the Manufacture of Botanical Injections: Second Ethanol Precipitation and Solvent Extraction. Industrial & Engineering Chemistry Research, 2011, 50, 7542-7548.	3.7	22
59	Solid-Liquid Equilibria of D-Glucose, D-Fructose and Sucrose in the Mixture of Ethanol and Water from 273.2 K to 293.2 K. Chinese Journal of Chemical Engineering, 2011, 19, 217-222.	3.5	31
60	Absorption and desorption of gaseous toluene by an absorbent microcapsules column. Journal of Hazardous Materials, 2010, 173, 243-248.	12.4	12
61	Phase Equilibrium Calculations in Mixtures Containing Caprolactam with a UNIFAC Model. Chinese Journal of Chemical Engineering, 2010, 18, 286-291.	3.5	5
62	Preparation of polysulfone microcapsules containing 1-octanol for the recovery of caprolactam. Journal of Microencapsulation, 2009, 26, 104-110.	2.8	20
63	Preparation of Uniform Microcapsules Containing 1-Octanol for Caprolactam Extraction. Industrial & Lamp; Engineering Chemistry Research, 2009, 48, 4507-4513.	3.7	21
64	Selection and Evaluation of a New Extractant for Caprolactam Extraction. Chinese Journal of Chemical Engineering, 2008, 16, 876-880.	3.5	10
65	Polysulphone microcapsules containing silicone oil for the removal of toxic volatile organics from water. Journal of Microencapsulation, 2008, 25, 196-202.	2.8	13
66	Preparation of uniform microcapsules with silicone oil as continuous phase in a micro-dispersion process. Journal of Microencapsulation, 2007, 24, 767-776.	2.8	13
67	Liquidâ^'Liquid Equilibria of the Quaternary System Water + Caprolactam + 1-Octanol + Ammonium Sulfate. Journal of Chemical & Engineering Data, 2007, 52, 851-855.	1.9	12
68	Distribution Coefficient of Caprolactam and Methyl Caprolactam Using Benzene or Toluene as Extractants: Experiments and Prediction. Chinese Journal of Chemical Engineering, 2007, 15, 463-467.	3.5	8