
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8439931/publications.pdf Version: 2024-02-01

SAN H THANC

#	Article	IF	CITATIONS
1	Constructing novel nanofibrous polyacrylonitrile (PAN)-based anion exchange membrane adsorber for protein separation. Separation and Purification Technology, 2022, 285, 120364.	3.9	11
2	Towards next generation high throughput ion exchange membranes for downstream bioprocessing: A review. Journal of Membrane Science, 2022, 647, 120325.	4.1	12
3	A fluorescence strategy for direct quantification of arm components in mikto-arm star copolymers. Polymer Chemistry, 2022, 13, 2026-2035.	1.9	3
4	RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chemical Science, 2022, 13, 4192-4224.	3.7	61
5	Thermoresponsive chiral plasmonic nanoparticles. Nanoscale, 2022, 14, 4292-4303.	2.8	6
6	Preparation of Thermo―and pHâ€Responsive Microgels Based on Complementary Nucleobase Molecular Recognition. Macromolecular Rapid Communications, 2022, , 2200239.	2.0	2
7	Photoluminescent polymer cubosomes prepared by RAFT-mediated polymerization-induced self-assembly. Polymer Chemistry, 2022, 13, 4333-4342.	1.9	10
8	Nanoparticle Surface Cross-Linking: A Universal Strategy to Enhance the Mechanical Properties of Latex Films. Macromolecules, 2022, 55, 5301-5313.	2.2	7
9	Sonochemical preparation of polymer–metal nanocomposites with catalytic and plasmonic properties. Nanoscale Advances, 2021, 3, 3306-3315.	2.2	28
10	Gasâ€Responsive Selfâ€Assemblies for Mimicking the Alveoli. Macromolecular Rapid Communications, 2021, 42, 2100019.	2.0	1
11	Triggered Degradable Colloidal Particles with Ordered Inverse Bicontinuous Cubic and Hexagonal Mesophases. ACS Nano, 2021, 15, 4688-4698.	7.3	42
12	Facile Synthesis of CO 2 â€Responsive Nanoâ€Objects: Batch versus Semiâ€Batch RAFT Copolymerization. Macromolecular Rapid Communications, 2021, 42, 2000765.	2.0	6
13	"All-PVC―Flexible Poly(vinyl Chloride): Nonmigratory <i>Star</i> -Poly(vinyl Chloride) as Plasticizers for PVC by RAFT Polymerization. Macromolecules, 2021, 54, 5022-5032.	2.2	11
14	Novel Amphiphilic Block Copolymers for the Formation of Stimuli-Responsive Non-Lamellar Lipid Nanoparticles. Molecules, 2021, 26, 3648.	1.7	14
15	Polymer Nanodiscs and Their Bioanalytical Potential. Chemistry - A European Journal, 2021, 27, 12922-12939.	1.7	14
16	Polymerization-Induced Hierarchical Self-Assembly: From Monomer to Complex Colloidal Molecules and Beyond. ACS Nano, 2021, 15, 13721-13731.	7.3	25
17	Synthesis of functional miktoarm star polymers in an automated parallel synthesizer. European Polymer Journal, 2021, 160, 110777.	2.6	6
18	Bifunctional RAFT Agent Directed Preparation of Polymer/Graphene Oxide Composites. Macromolecular Rapid Communications, 2021, 42, e2100460.	2.0	4

#	Article	IF	CITATIONS
19	Frontispiece: Polymer Nanodiscs and Their Bioanalytical Potential. Chemistry - A European Journal, 2021, 27, .	1.7	0
20	Functionalization of liquid metal nanoparticles <i>via</i> the RAFT process. Polymer Chemistry, 2021, 12, 3015-3025.	1.9	24
21	Synthesis of CO ₂ -responsive gradient copolymers by switchable RAFT polymerization and their controlled self-assembly. Polymer Chemistry, 2020, 11, 6794-6802.	1.9	7
22	Facile synthesis of well-controlled poly(1-vinyl imidazole) by the RAFT process. Polymer Chemistry, 2020, 11, 5649-5658.	1.9	20
23	Room temperature synthesis of block copolymer nano-objects with different morphologies <i>via</i> ultrasound initiated RAFT polymerization-induced self-assembly (sono-RAFT-PISA). Polymer Chemistry, 2020, 11, 3564-3572.	1.9	32
24	Versatile Approach for Preparing PVC-Based Mikto-Arm Star Additives Based on RAFT Polymerization. Macromolecules, 2020, 53, 4465-4479.	2.2	13
25	Polymerization-Induced Self-Assembly (PISA) and "Host–Guest―Complexation-Directed Polymer/Gold Nanocomposites. , 2020, 2, 492-498.		24
26	Synthesis of star-shaped polyzwitterions with adjustable UCST and fast responsiveness by a facile RAFT polymerization. Polymer Chemistry, 2020, 11, 3162-3168.	1.9	14
27	Effect of end-groups on sulfobetaine homopolymers with the tunable upper critical solution temperature (UCST). European Polymer Journal, 2020, 132, 109704.	2.6	15
28	Cell-Penetrating, Peptide-Based RAFT Agent for Constructing Penetration Enhancers. ACS Macro Letters, 2020, 9, 260-265.	2.3	19
29	Enzyme Degassing for Oxygen-Sensitive Reactions in Open Vessels of an Automated Parallel Synthesizer: RAFT Polymerizations. ACS Combinatorial Science, 2019, 21, 643-649.	3.8	15
30	Spindle-like and telophase-like self-assemblies mediated by complementary nucleobase molecular recognition. Chemical Communications, 2019, 55, 1462-1465.	2.2	16
31	Synthesis of multifunctional miktoarm star polymers <i>via</i> an RGD peptide-based RAFT agent. Polymer Chemistry, 2019, 10, 228-234.	1.9	18
32	Covalent-Cross-Linked Plasmene Nanosheets. ACS Nano, 2019, 13, 6760-6769.	7.3	19
33	A facile synthesis of pH stimuli biocompatible block copolymer poly(methacrylic) Tj ETQq1 1 0.784314 rgBT /Ove Chemistry, 2019, 10, 2083-2090.	erlock 10 1.9	Tf 50 187 Td 20
34	Effect of solvents on the RAFT polymerization of N-(2-hydroxypropyl) methacrylamide. European Polymer Journal, 2019, 115, 166-172.	2.6	18
35	Nonmigratory Poly(vinyl chloride)-block-polycaprolactone Plasticizers and Compatibilizers Prepared by Sequential RAFT and Ring-Opening Polymerization (RAFT-T̵-ROP). Macromolecules, 2019, 52, 1746-1756.	2.2	34
36	Degradable pH and redox dual responsive nanoparticles for efficient covalent drug delivery. Polymer Chemistry, 2019, 10, 1291-1298.	1.9	29

#	Article	IF	CITATIONS
37	Machine learning based temperature prediction of poly(<i>N</i> -isopropylacrylamide)-capped plasmonic nanoparticle solutions. Physical Chemistry Chemical Physics, 2019, 21, 24808-24819.	1.3	2
38	RAFT polymerization of a RGD peptide-based methacrylamide monomer for cell adhesion. Polymer Chemistry, 2018, 9, 1780-1786.	1.9	13
39	Polymer Synthesis with More Than One Form of Living Polymerization Method. Macromolecular Rapid Communications, 2018, 39, e1800479.	2.0	49
40	Synthesis, self-assembly, and base-pairing of nucleobase end-functionalized block copolymers in aqueous solution. Polymer Chemistry, 2018, 9, 5086-5094.	1.9	13
41	Poly(N-isopropylacrylamide) capped plasmonic nanoparticles as resonance intensity-based temperature sensors with linear correlation. Journal of Materials Chemistry C, 2017, 5, 10926-10932.	2.7	19
42	Glycosylated Reversible Addition–Fragmentation Chain Transfer Polymers with Varying Polyethylene Glycol Linkers Produce Different Short Interfering RNA Uptake, Gene Silencing, and Toxicity Profiles. Biomacromolecules, 2017, 18, 4099-4112.	2.6	5
43	Syntheses and effectiveness of functional peptide-based RAFT agents. Chemical Communications, 2017, 53, 10776-10779.	2.2	15
44	Temperature-responsive methacrylamide polyampholytes. RSC Advances, 2017, 7, 31033-31041.	1.7	7
45	In Focus Emerging Polymer Technologies Summit (EPTS'16). Polymer International, 2017, 66, 1423-1423.	1.6	0
46	Attempted Synthesis and Unexpected β-Fragmentation of a Hindered β-Keto Nitroxide. Australian Journal of Chemistry, 2017, 70, 1106.	0.5	1
47	Comparing Gene Silencing and Physiochemical Properties in siRNA Bound Cationic Star-Polymer Complexes. Biomacromolecules, 2016, 17, 3532-3546.	2.6	16
48	Multi-responsive (diethylene glycol)methyl ether methacrylate (DEGMA)-based copolymer systems. RSC Advances, 2016, 6, 90923-90933.	1.7	12
49	Advances in Switchable RAFT Polymerization. Macromolecular Symposia, 2015, 350, 34-42.	0.4	44
50	Preparation of 1 : 1 alternating, nucleobase-containing copolymers for use in sequence-controlled polymerization. Polymer Chemistry, 2015, 6, 228-232.	1.9	24
51	Inhibition of influenza virusin vivoby siRNA delivered using ABA triblock copolymer synthesized by reversible addition-fragmentation chain-transfer polymerization. Nanomedicine, 2014, 9, 1141-1154.	1.7	13
52	Continuous Flow Aminolysis of RAFT Polymers Using Multistep Processing and Inline Analysis. Macromolecules, 2014, 47, 8203-8213.	2.2	35
53	Conformational transitions and dynamics of thermal responsive poly(N-isopropylacrylamide) polymers as revealed by molecular simulation. European Polymer Journal, 2014, 55, 153-159.	2.6	32
54	RAFT for the Control of Monomer Sequence Distribution – Single Unit Monomer Insertion (SUMI) into Dithiobenzoate RAFT Agents. ACS Symposium Series, 2014, , 133-147.	0.5	17

#	Article	IF	CITATIONS
55	An Armâ€First Approach to Cleavable Miktoâ€Arm Star Polymers by RAFT Polymerization. Macromolecular Rapid Communications, 2014, 35, 840-845.	2.0	47
56	One pot synthesis of higher order quasi-block copolymer libraries <i>via</i> sequential RAFT polymerization in an automated synthesizer. Polymer Chemistry, 2014, 5, 5236-5246.	1.9	72
57	Synthesis of cleavable multi-functional mikto-arm star polymer by RAFT polymerization: example of an anti-cancer drug 7-ethyl-10-hydroxycamptothecin (SN-38) as functional moiety. Science China Chemistry, 2014, 57, 995-1001.	4.2	17
58	RAFT Polymerization and Some of its Applications. Chemistry - an Asian Journal, 2013, 8, 1634-1644.	1.7	276
59	Fundamentals of RAFT Polymerization. RSC Polymer Chemistry Series, 2013, , 205-249.	0.1	21
60	Core Degradable Star RAFT Polymers: Synthesis, Polymerization, and Degradation Studies. Macromolecules, 2013, 46, 9181-9188.	2.2	36
61	Asymmetric Aldol Reaction on Water Using an Organocatalyst Tethered on a Thermoresponsive Block Copolymer. Chemistry Letters, 2013, 42, 1493-1495.	0.7	15
62	Living Radical Polymerization by the RAFT Process – A Third Update. Australian Journal of Chemistry, 2012, 65, 985.	0.5	920
63	Synthesis of Symmetrical, Substituted (alkane-α,ï‰-diyl)(bis[3,3′-allyl dithioethers]) Monomers for Photoplastic Polymer Networks. Australian Journal of Chemistry, 2012, 65, 1165.	0.5	3
64	The effect of RAFT-derived cationic block copolymer structure on gene silencing efficiency. Biomaterials, 2012, 33, 7631-7642.	5.7	53
65	Thermo-Induced Self-Assembly of Responsive Poly(DMAEMA- <i>b</i> -DEGMA) Block Copolymers into Multi- and Unilamellar Vesicles. Macromolecules, 2012, 45, 9292-9302.	2.2	129
66	Effect of Cross-Link Density on Photoplasticity of Epoxide Networks Containing Allylic Dithioether Moieties. Macromolecules, 2012, 45, 9734-9741.	2.2	22
67	Chain Transfer Kinetics of Acid/Base Switchable <i>N</i> -Aryl- <i>N</i> -Pyridyl Dithiocarbamate RAFT Agents in Methyl Acrylate, <i>N</i> -Vinylcarbazole and Vinyl Acetate Polymerization. Macromolecules, 2012, 45, 4205-4215.	2.2	81
68	RAFT Agent Design and Synthesis. Macromolecules, 2012, 45, 5321-5342.	2.2	505
69	Some Recent Developments in RAFT Polymerization. ACS Symposium Series, 2012, , 243-258.	0.5	9
70	RAFTâ€Derived Polymer–Drug Conjugates: Poly(hydroxypropyl methacrylamide) (HPMA)–7â€Ethylâ€10â€hydroxycamptothecin (SNâ€38) Conjugates. ChemMedChem, 2012, 7, 281-291.	1.6	28
71	Synthesis of Acyclic, Symmetrical 3,3'-Allyl Dithioethers, from the Alkylation of 3-Mercapto-2-mercaptomethylprop-1-ene in the Presence of Sodium Hydride. Australian Journal of Chemistry, 2011, 64, 1083.	0.5	10
72	Functional polymers for optoelectronic applications by RAFT polymerization. Polymer Chemistry, 2011, 2, 492-519.	1.9	153

#	Article	IF	CITATIONS
73	Controlled RAFT Polymerization in a Continuous Flow Microreactor. Organic Process Research and Development, 2011, 15, 593-601.	1.3	123
74	Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization in Aqueous Solution, <i>N</i> , <i>N</i> -Dimethylacrylamide. Macromolecules, 2011, 44, 6738-6745.	2.2	105
75	Block Copolymer Synthesis through the Use of Switchable RAFT Agents. ACS Symposium Series, 2011, , 81-102.	0.5	24
76	Endâ€functional polymers, thiocarbonylthio group removal/transformation and reversible addition–fragmentation–chain transfer (RAFT) polymerization. Polymer International, 2011, 60, 9-25.	1.6	275
77	Substituent Effects on RAFT Polymerization with Benzyl Aryl Trithiocarbonates. Macromolecular Chemistry and Physics, 2010, 211, 529-538.	1.1	26
78	RAFT Polymerization: Materials of The Future, Science of Today: Radical Polymerization - The Next Stage. Australian Journal of Chemistry, 2009, 62, 1379.	0.5	34
79	Combinatorial Discovery of Novel Amphiphilic Polymers for the Phase Transfer of Magnetic Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 16615-16624.	1.5	25
80	Living Radical Polymerization by the RAFT Process - A Second Update. Australian Journal of Chemistry, 2009, 62, 1402.	0.5	874
81	New Features of the Mechanism of RAFT Polymerization. ACS Symposium Series, 2009, , 3-18.	0.5	39
82	Universal (Switchable) RAFT Agents. Journal of the American Chemical Society, 2009, 131, 6914-6915.	6.6	271
83	Polystyrene-block-poly(vinyl acetate) through the Use of a Switchable RAFT Agent. Macromolecules, 2009, 42, 9384-9386.	2.2	109
84	Radical addition–fragmentation chemistry in polymer synthesis. Polymer, 2008, 49, 1079-1131.	1.8	1,296
85	Toward Living Radical Polymerization. Accounts of Chemical Research, 2008, 41, 1133-1142.	7.6	675
86	Controlled synthesis of luminescent polymers using a bis-dithiobenzoate RAFT agent. Chemical Communications, 2008, , 1112.	2.2	39
87	Thiocarbonylthio End Group Removal from RAFT-Synthesized Polymers by Radical-Induced Reduction. Macromolecules, 2007, 40, 4446-4455.	2.2	221
88	RAFT Polymerization: Adding to the Picture. Macromolecular Symposia, 2007, 248, 104-116.	0.4	79
89	Reversible Addition Fragmentation Chain Transfer Polymerization of Methyl Methacrylate in the Presence of Lewis Acids:  An Approach to Stereocontrolled Living Radical Polymerization. Macromolecules, 2007, 40, 9262-9271.	2.2	51
90	Living Radical Polymerization by the RAFT Process—A First Update. Australian Journal of Chemistry, 2006, 59, 669.	0.5	826

#	Article	IF	CITATIONS
91	Enhanced Energy Transfer Efficiency in Starâ€Shaped Lightâ€Harvesting Block Copolymers Prepared by RAFT Polymerization. Journal of the Chinese Chemical Society, 2006, 53, 79-83.	0.8	12
92	Tailored amphiphilic star-shaped light-harvesting copolymers. Polymer International, 2006, 55, 757-763.	1.6	17
93	RAFT Copolymerization and Its Application to the Synthesis of Novel Dispersants—Intercalants—Exfoliants for Polymer—Clay Nanocomposites. ACS Symposium Series, 2006, , 514-532.	0.5	24
94	Thermolysis of RAFT-Synthesized Poly(Methyl Methacrylate). Australian Journal of Chemistry, 2006, 59, 755.	0.5	117
95	The application of a novel profluorescent nitroxide to monitor thermo-oxidative degradation of polypropylene. Polymer Degradation and Stability, 2005, 89, 427-435.	2.7	60
96	Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer, 2005, 46, 8458-8468.	1.8	735
97	Star-Shaped Light-Harvesting Polymers Incorporating an Energy Cascade. Angewandte Chemie - International Edition, 2005, 44, 4368-4372.	7.2	50
98	Living Radical Polymerization by the RAFT Process. ChemInform, 2005, 36, no.	0.1	0
99	Binary Copolymerization with Catalytic Chain Transfer. A Method for Synthesizing Macromonomers Based on Monosubstituted Monomers. Macromolecules, 2005, 38, 9037-9054.	2.2	32
100	Amphiphilic Acenaphthyleneâ^'Maleic Acid Light-Harvesting Alternating Copolymers:Â Reversible Additionâ^'Fragmentation Chain Transfer Synthesis and Fluorescence. Macromolecules, 2005, 38, 3475-3481.	2.2	30
101	Synthesis and Fluorescence of a Series of Multichromophoric Acenaphthenyl Compounds. Journal of Organic Chemistry, 2005, 70, 1844-1852.	1.7	30
102	Living Radical Polymerization by the RAFT Process. Australian Journal of Chemistry, 2005, 58, 379.	0.5	2,116
103	Synthesis of Functionalized RAFT Agents for Light Harvesting Macromolecules. Macromolecules, 2004, 37, 5479-5481.	2.2	78
104	A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization:Â Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules, 2004, 37, 7861-7866.	2.2	524
105	Chain Transfer Activity of ω-Unsaturated Methacrylic Oligomers in Polymerizations of Methacrylic Monomers. Macromolecules, 2004, 37, 4441-4452.	2.2	44
106	Mechanisms of Excimer Formation in Poly(acenaphthylene). Australian Journal of Chemistry, 2004, 57, 1175.	0.5	23
107	Thiocarbonylthio Compounds [SC(Ph)Sâ^'R] in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules, 2003, 36, 2256-2272.	2.2	758
108	Kinetics and Mechanism of RAFT Polymerization. ACS Symposium Series, 2003, , 520-535.	0.5	58

#	Article	IF	CITATIONS
109	RAFT Polymers: Novel Precursors for Polymer—Protein Conjugates. ACS Symposium Series, 2003, , 603-618.	0.5	62
110	Thiocarbonylthio Compounds (SC(Z)Sâ^'R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z. Macromolecules, 2003, 36, 2273-2283.	2.2	587
111	Synthesis of novel architectures by radical polymerization with reversible addition fragmentation chain transfer (RAFT polymerization). Macromolecular Symposia, 2003, 192, 1-12.	0.4	147
112	RAFT synthesis of linear and star-shaped light harvesting polymers using di- and hexafunctional ruthenium polypyridine reagents. Journal of Materials Chemistry, 2003, 13, 2696-2700.	6.7	85
113	Initiating free radical polymerization. Macromolecular Symposia, 2002, 182, 65-80.	0.4	77
114	Synthesis of light harvesting polymers by RAFT methods. Chemical Communications, 2002, , 2276-2277.	2.2	64
115	Living Free Radical Polymerisation Under a Constant Source of Gamma Radiation – An Example of Reversible Addition-Fragmentation Chain Transfer or Reversible Termination?. Macromolecular Rapid Communications, 2002, 23, 717-721.	2.0	56
116	Mechanism and Kinetics of RAFT-Based Living Radical Polymerizations of Styrene and Methyl Methacrylate. Macromolecules, 2001, 34, 402-408.	2.2	313
117	Tailored polymer architectures by reversible addition-frasmentation chain transfer. Macromolecular Symposia, 2001, 174, 209-212.	0.4	82
118	Alkoxyamine-mediated ?living? radical polymerization: MS investigation of the early stages of styrene polymerization initiated by cumyl-TEISO. Journal of Polymer Science Part A, 2001, 39, 1232-1241.	2.5	26
119	End-functionalized copolymers prepared by the addition-fragmentation chain-transfer method: Vinyl acetate/methacrylonitrile system. Journal of Polymer Science Part A, 2001, 39, 2911-2919.	2.5	10
120	Living free radical polymerization with reversible addition - fragmentation chain transfer (the life of) Tj ETQq0 0 () rgBT /Ov 1.6	erlock 10 Tf 5
121	The reactivity of nitroxides towards alkenes. Tetrahedron Letters, 2000, 41, 3673-3676.	0.7	24
122	Preparation of Macromonomers via Chain Transfer with and without Added Chain Transfer Agent. ACS Symposium Series, 2000, , 297-312.	0.5	22
123	Synthesis of Defined Polymers by Reversible Addition—Fragmentation Chain Transfer: The RAFT Process. ACS Symposium Series, 2000, , 278-296.	0.5	175
124	Thermal Decomposition Mechanisms of tert-Alkyl Peroxypivalates Studied by the Nitroxide Radical Trapping Technique. Journal of Organic Chemistry, 2000, 65, 16-23.	1.7	33
125	Living Polymers by the Use of Trithiocarbonates as Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Agents:Â ABA Triblock Copolymers by Radical Polymerization in Two Steps. Macromolecules, 2000, 33, 243-245.	2.2	446
126	Molecular Weight Characterization of Poly(N-isopropylacrylamide) Prepared by Living Free-Radical Polymerization. Macromolecules, 2000, 33, 6738-6745.	2.2	331

#	Article	lF	CITATIONS
127	End-functionalised copolymers prepared by the addition-fragmentation chain transfer method Styrene/methyl methacrylate system. Polymer, 1999, 40, 389-396.	1.8	10
128	Initiation mechanisms for radical polymerization of styrene and methyl methacrylate with highly substituted peroxypivalate initiators. Polymer, 1999, 40, 1395-1401.	1.8	22
129	A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates. Tetrahedron Letters, 1999, 40, 2435-2438.	0.7	441
130	Living Radical Polymerization with Reversible Additionâ^'Fragmentation Chain Transfer (RAFT):Â Direct ESR Observation of Intermediate Radicals. Macromolecules, 1999, 32, 5457-5459.	2.2	174
131	Tailored polymers by free radical processes. Macromolecular Symposia, 1999, 143, 291-307.	0.4	136
132	Living Radical Polymerization with Reversible Additionâ [~] 'Fragmentation Chain Transfer (RAFT) Tj ETQq0 0 0 rgBT / 6977-6980.	Overlock 2 2.2	10 Tf 50 547 519
133	Imidazolidinone Nitroxide-Mediated Polymerization. Macromolecules, 1999, 32, 6895-6903.	2.2	85
134	Chain Transfer to Polymer:Â A Convenient Route to Macromonomers. Macromolecules, 1999, 32, 7700-7702.	2.2	163
135	A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization:Â The RAFT Process. Macromolecules, 1999, 32, 2071-2074.	2.2	820
136	Living Free-Radical Polymerization by Reversible Additionâ^'Fragmentation Chain Transfer:Â The RAFT Process. Macromolecules, 1998, 31, 5559-5562.	2.2	4,672
137	Improving the knowledge and design of end groups in polymers produced by free radical polymerization. Polymers for Advanced Technologies, 1998, 9, 94-100.	1.6	11
138	Controlled-Growth Free-Radical Polymerization of Methacrylate Esters: Reversible Chain Transfer versus Reversible Termination. ACS Symposium Series, 1998, , 332-360.	0.5	76
139	Thermal Decomposition of 1-Cyclohexyl-1-methylethyl Peroxypivalate. Chemistry Letters, 1998, 27, 965-966.	0.7	1
140	A Novel Organic Peroxyester as an Exclusive Source oftert-Butyl Radicals. Chemistry Letters, 1997, 26, 1093-1094.	0.7	10
141	Initiation Mechanisms in Radical Polymerization:Â Reaction oftert-Alkyl Peroxypivalates with Methyl Methacrylate. Macromolecules, 1997, 30, 2843-2847.	2.2	19
142	Reaction of tert-Alkoxyl and Alkyl Radicals with Styrene Studied by the Nitroxide Radical-Trapping Technique. Journal of Organic Chemistry, 1997, 62, 5578-5582.	1.7	31
143	Free Radical Initiation Mechanisms in the Polymerization of Methyl Methacrylate and Styrene with 1,1,3,3-Tetramethylbutyl Peroxypivalate:  Addition of Neopentyl Radicals. Journal of the American Chemical Society, 1997, 119, 10987-10991.	6.6	18
144	Advantage of Usingtert-Hexyl Peroxypivalate as an Initiator for the Polymerization of Methyl Methacrylate. Macromolecules, 1996, 29, 8975-8976.	2.2	11

#	Article	IF	CITATIONS
145	Initiation Mechanisms for Radical Polymerization of Methyl Methacrylate withtert-Butyl Peroxypivalate. Journal of the American Chemical Society, 1996, 118, 10824-10828.	6.6	20
146	Chain Transfer Activity of ω-Unsaturated Methyl Methacrylate Oligomers. Macromolecules, 1996, 29, 7717-7726.	2.2	140
147	Control of polymer structure by chain transfer processes. Macromolecular Symposia, 1996, 111, 1-11.	0.4	26
148	Chain transfer by radical additionâ€fragmentation mechanisms: Synthesis of macromonomers and endâ€functional oligomers. Macromolecular Symposia, 1995, 98, 101-123.	0.4	53
149	New Free-Radical Ring-Opening Acrylate Monomers. Macromolecules, 1994, 27, 7935-7937.	2.2	84
150	Comparison of initiation mechanisms for polymerization initiated by primary, secondary and tertiary alkoxyl radicals. European Polymer Journal, 1993, 29, 397-400.	2.6	20
151	A Convenient Synthesis of 1-Alkyl-4,4-dimethyl-1,4,5,6-tetrahydropyridines ¹ . Synthetic Communications, 1993, 23, 2355-2361.	1.1	22
152	A Convenient Synthesis of 4,6-Dichloro-5-benzylthiopyrimidine. Synthetic Communications, 1993, 23, 2363-2369.	1.1	5
153	Initiation mechanisms in radical polymerization: reaction of isopropoxyl radicals with methyl methacrylate. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1351.	0.9	19
154	The use of substituted allylic sulfides to prepare end-functional polymers of controlled molecular weight by free-radical polymerization. Macromolecules, 1991, 24, 3689-3695.	2.2	109
155	Chain transfer activity of some activated allylic compounds. Polymer Bulletin, 1990, 24, 501-505.	1.7	91
156	Formation of 3′,6′-anhydrosucrose by Mitsunobu dehydration of sucrose. Carbohydrate Research, 1988, 176, 306-308.	1.1	11
157	Preparation of controlled-molecular-weight, olefin-terminated polymers by free radical methods. Chain transfer using allylic sulfides. Macromolecules, 1988, 21, 3122-3124.	2.2	144
158	Initiation mechanisms in radical polymerization: reaction of t-butoxy radicals with allyl acrylate and with diallyl ether. Journal of the Chemical Society Perkin Transactions 1, 1988, , 485.	0.9	11
159	Reaction of t-butoxy radicals with norbornadiene. Tetrahedron Letters, 1985, 26, 5081-5084.	0.7	14
160	Slow nitrogen inversion–N–O rotation in 2-alkoxy-1,1,3,3-tetramethylisoindolines. Journal of the Chemical Society Chemical Communications, 1985, , 1249-1250.	2.0	10
161	Derivatives of sucrose 3′,4′-epoxide. Carbohydrate Research, 1983, 121, 109-117.	1.1	26
162	d-fructose derivatives modified at C-4 by direct displacementand by oxirane opening. Carbohydrate Research, 1982, 103, 1-6.	1.1	12

#	Article	IF	CITATIONS
163	Efficiency and Stability Enhancement of Quasi-Solid-State Dye-Sensitized Solar Cells Based on PEO Composite Polymer Blend Electrolytes. Advanced Materials Research, 0, 1131, 186-192.	0.3	4