
Catherine J Stoodley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8439760/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. NeuroImage, 2009, 44, 489-501.	4.2	1,790
2	Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 2010, 46, 831-844.	2.4	1,148
3	Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. NeuroImage, 2012, 59, 1560-1570.	4.2	900
4	The Cerebellum and Cognition: Evidence from Functional Imaging Studies. Cerebellum, 2012, 11, 352-365.	2.5	559
5	Consensus Paper: Language and the Cerebellum: an Ongoing Enigma. Cerebellum, 2014, 13, 386-410.	2.5	347
6	The Theory and Neuroscience of Cerebellar Cognition. Annual Review of Neuroscience, 2019, 42, 337-364.	10.7	337
7	Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nature Neuroscience, 2017, 20, 1744-1751.	14.8	275
8	Cerebro-cerebellar circuits in autism spectrum disorder. Frontiers in Neuroscience, 2015, 9, 408.	2.8	244
9	The Cerebellum and Neurodevelopmental Disorders. Cerebellum, 2016, 15, 34-37.	2.5	229
10	Cerebellar gray matter and lobular volumes correlate with core autism symptoms. NeuroImage: Clinical, 2015, 7, 631-639.	2.7	205
11	Consensus Paper: Cerebellum and Social Cognition. Cerebellum, 2020, 19, 833-868.	2.5	205
12	Autism Spectrum Disorder and the Cerebellum. International Review of Neurobiology, 2013, 113, 1-34.	2.0	197
13	Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Frontiers in Systems Neuroscience, 2014, 8, 92.	2.5	188
14	Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage: Clinical, 2016, 12, 765-775.	2.7	183
15	Lateralized cognitive deficits in children following cerebellar lesions. Developmental Medicine and Child Neurology, 2001, 43, 685.	2.1	163
16	The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. Cerebellum, 2020, 19, 102-125.	2.5	157
17	Structure–function relationships in the developing cerebellum: Evidence from early-life cerebellar injury and neurodevelopmental disorders. Seminars in Fetal and Neonatal Medicine, 2016, 21, 356-364.	2.3	149
18	Regulation of autism-relevant behaviors by cerebellar–prefrontal cortical circuits. Nature Neuroscience, 2020, 23, 1102-1110.	14.8	149

CATHERINE J STOODLEY

#	Article	IF	CITATIONS
19	Functional topography of the human cerebellum. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 154, 59-70.	1.8	146
20	The cerebellum and language: Evidence from patients with cerebellar degeneration. Brain and Language, 2009, 110, 149-153.	1.6	144
21	An fMRI Study of Intra-Individual Functional Topography in the Human Cerebellum. Behavioural Neurology, 2010, 23, 65-79.	2.1	132
22	Cerebellar Function in Developmental Dyslexia. Cerebellum, 2013, 12, 267-276.	2.5	131
23	On the relationship between dynamic visual and auditory processing and literacy skills; results from a large primary-school study. Dyslexia, 2002, 8, 204-225.	1.5	127
24	Implicit motor learning deficits in dyslexic adults. Neuropsychologia, 2006, 44, 795-798.	1.6	113
25	The cerebellum and dyslexia. Cortex, 2011, 47, 101-116.	2.4	105
26	Separate Influences of Acoustic AM and FM Sensitivity on the Phonological Decoding Skills of Impaired and Normal Readers. Journal of Cognitive Neuroscience, 2002, 14, 866-874.	2.3	103
27	Cerebellar tDCS Modulates Neural Circuits during Semantic Prediction: A Combined tDCS-fMRI Study. Journal of Neuroscience, 2017, 37, 1604-1613.	3.6	103
28	An fMRI study of intra-individual functional topography in the human cerebellum. Behavioural Neurology, 2010, 23, 65-79.	2.1	88
29	Impaired balancing ability in dyslexic children. Experimental Brain Research, 2005, 167, 370-380.	1.5	82
30	The developmental relationship between specific cognitive domains and grey matter in the cerebellum. Developmental Cognitive Neuroscience, 2017, 24, 1-11.	4.0	66
31	Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restorative Neurology and Neuroscience, 2016, 34, 491-505.	0.7	55
32	Implicit Learning in Control, Dyslexic, and Gardenâ€Variety Poor Readers. Annals of the New York Academy of Sciences, 2008, 1145, 173-183.	3.8	51
33	Selective deficits of vibrotactile sensitivity in dyslexic readers. Neuroscience Letters, 2000, 295, 13-16.	2.1	48
34	Auditory event-related potentials differ in dyslexics even when auditory psychophysical performance is normal. Brain Research, 2006, 1121, 190-199.	2.2	47
35	A processing speed deficit in dyslexic adults? Evidence from a peg-moving task. Neuroscience Letters, 2006, 399, 264-267.	2.1	41
36	Are there shared neural correlates between dyslexia and ADHD? A meta-analysis of voxel-based morphometry studies. Journal of Neurodevelopmental Disorders, 2019, 11, 31.	3.1	35

CATHERINE J STOODLEY

#	Article	IF	CITATIONS
37	Cerebellar gray matter differentiates children with early language delay in autism. Autism Research, 2016, 9, 1191-1204.	3.8	34
38	Interaction of threat and verbal working memory in adolescents. Psychophysiology, 2016, 53, 518-526.	2.4	26
39	Altered local cerebellar and brainstem development in preterm infants. NeuroImage, 2020, 213, 116702.	4.2	26
40	Balancing and pointing tasks in dyslexic and control adults. Dyslexia, 2006, 12, 276-288.	1.5	25
41	Adaptive Prediction for Social Contexts: The Cerebellar Contribution to Typical and Atypical Social Behaviors. Annual Review of Neuroscience, 2021, 44, 475-493.	10.7	24
42	Differential Behavioral and Neural Effects of Regional Cerebellar tDCS. Neuroscience, 2021, 462, 288-302.	2.3	15
43	Functional MRI evidence for the importance of visual shortâ€ŧerm memory in logographic reading. European Journal of Neuroscience, 2011, 33, 539-548.	2.6	14
44	Cerebral mechanisms for different second language writing systems. Neuropsychologia, 2013, 51, 2261-2270.	1.6	14
45	Hypoplasia of cerebellar afferent networks in Down syndrome revealed by DTI-driven tensor based morphometry. Scientific Reports, 2020, 10, 5447.	3.3	13
46	An Exploratory Study of Cerebellar Transcranial Direct Current Stimulation in Individuals With Chronic Stroke Aphasia. Cognitive and Behavioral Neurology, 2021, 34, 96-106.	0.9	12
47	Lateralized cognitive deficits in children following cerebellar lesions. Developmental Medicine and Child Neurology, 2001, 43, 685-691.	2.1	8
48	Interaction of induced anxiety and verbal working memory: influence of trait anxiety. Learning and Memory, 2017, 24, 407-413.	1.3	8
49	Functional Topography of the Human Cerebellum Revealed by Functional Neuroimaging Studies. , 2021, , 1-37.		7
50	A cross-linguistic evaluation of script-specific effects on fMRI lateralization in late second language readers. Frontiers in Human Neuroscience, 2014, 8, 249.	2.0	5
51	The Role of the Cerebellum in Developmental Dyslexia. , 2016, , 199-221.		5
52	Functional Linguistic Topography of the Cerebellum. , 2016, , 315-335.		4
53	Functional Topography of the Human Cerebellum Revealed by Functional Neuroimaging Studies. , 2013, , 735-764.		2

54 Functional Topography of the Human Cerebellum. , 2016, , 373-381.

#	Article	IF	CITATIONS
55	Functional Topography of the Human Cerebellum Revealed by Functional Neuroimaging Studies. , 2022, , 797-833.		1