Yanan Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8439264/publications.pdf

Version: 2024-02-01

67 papers	2,519 citations	236925 25 h-index	214800 47 g-index
69	69	69	3863
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Research, 2015, 25, 24-38.	12.0	307
2	Engineering cell alignment in vitro. Biotechnology Advances, 2014, 32, 347-365.	11.7	220
3	Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis. Nature Materials, 2017, 16, 1252-1261.	27.5	132
4	Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13511-13516.	7.1	127
5	Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nature Communications, 2019, 10, 3491.	12.8	117
6	3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration. Scientific Reports, 2016, 6, 32184.	3. 3	110
7	Mechanically and Electrically Enhanced CNT–Collagen Hydrogels As Potential Scaffolds for Engineered Cardiac Constructs. ACS Biomaterials Science and Engineering, 2017, 3, 3017-3021.	5 . 2	97
8	Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing. Acta Biomaterialia, 2015, 25, 291-303.	8.3	92
9	Injectable microcryogels reinforced alginate encapsulation ofÂmesenchymal stromal cells for leak-proof delivery andÂalleviationÂofAcanine disc degeneration. Biomaterials, 2015, 59, 53-65.	11.4	91
10	Mechanical communication in fibrosis progression. Trends in Cell Biology, 2022, 32, 70-90.	7.9	63
11	Microcryogels as injectable 3-D cellular microniches for site-directed and augmented cell delivery. Acta Biomaterialia, 2014, 10, 1864-1875.	8.3	62
12	KRAS(G12D) can be targeted by potent inhibitors via formation of salt bridge. Cell Discovery, 2022, 8, 5.	6.7	52
13	High throughput scaffold-based 3D micro-tumor array for efficient drug screening and chemosensitivity testing. Biomaterials, 2019, 198, 167-179.	11.4	50
14	Matrix-transmitted paratensile signaling enables myofibroblast <scp>–</scp> fibroblast cross talk in fibrosis expansion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10832-10838.	7.1	48
15	Microengineered <i>in vitro</i> model of cardiac fibrosis through modulating myofibroblast mechanotransduction. Biofabrication, 2014, 6, 045009.	7.1	47
16	Engineering EMT using 3D micro-scaffold to promote hepatic functions for drug hepatotoxicity evaluation. Biomaterials, 2016, 91, 11-22.	11.4	45
17	A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nature Communications, 2018, 9, 4259.	12.8	42
18	Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion. Tissue Engineering - Part C: Methods, 2020, 26, 263-275.	2.1	42

#	Article	IF	Citations
19	State of the art in flexible SERS sensors toward label-free and onsite detection: from design to applications. Nano Research, 2022, 15, 4374-4394.	10.4	42
20	Managing keloid scars: From radiation therapy to actual and potential drug deliveries. International Wound Journal, 2019, 16, 852-859.	2.9	40
21	Monolayer culture of intestinal epithelium sustains Lgr5+ intestinal stem cells. Cell Discovery, 2018, 4, 32.	6.7	37
22	In vitro cardiomyocyte-driven biogenerator based on aligned piezoelectric nanofibers. Nanoscale, 2016, 8, 7278-7286.	5.6	32
23	Keloid progression: a stiffness gap hypothesis. International Wound Journal, 2017, 14, 764-771.	2.9	30
24	Enhanced single-cell encapsulation in microfluidic devices: From droplet generation to single-cell analysis. Biomicrofluidics, 2020, 14, 061508.	2.4	28
25	Engineering 3D functional tissue constructs using self-assembling cell-laden microniches. Acta Biomaterialia, 2020, 114, 170-182.	8.3	27
26	Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioactive Materials, 2022, 9, 332-342.	15.6	27
27	Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements. Scientific Reports, 2016, 6, 20063.	3.3	26
28	Engineered meatballs via scalable skeletal muscle cell expansion and modular micro-tissue assembly using porous gelatin micro-carriers. Biomaterials, 2022, 287, 121615.	11.4	26
29	Biomechanically primed liver microtumor array as a high-throughput mechanopharmacological screening platform for stroma-reprogrammed combinatorial therapy. Biomaterials, 2017, 124, 12-24.	11.4	25
30	Nanotechnology for Tissue Engineering Applications. Journal of Nanomaterials, 2011, 2011, 1-2.	2.7	24
31	A low dose cell therapy system for treating osteoarthritis: In vivo study and in vitro mechanistic investigations. Bioactive Materials, 2022, 7, 478-490.	15.6	23
32	Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis. Protein and Cell, 2015, 6, 735-745.	11.0	22
33	Stiffnessâ€Controlled Thermoresponsive Hydrogels for Cell Harvesting with Sustained Mechanical Memory. Advanced Healthcare Materials, 2017, 6, 1601152.	7.6	22
34	Collagen crosslinking: effect on structure, mechanics and fibrosis progression. Biomedical Materials (Bristol), 2021, 16, 062005.	3.3	22
35	Substrate stiffness orchestrates epithelial cellular heterogeneity with controlled proliferative pattern via E-cadherin/ \hat{l}^2 -catenin mechanotransduction. Acta Biomaterialia, 2016, 41, 169-180.	8.3	19
36	Pathology-targeted cell delivery via injectable micro-scaffold capsule mediated by endogenous TGase. Biomaterials, 2017, 126, 1-9.	11.4	19

#	Article	IF	CITATIONS
37	Optimizing mesoderm progenitor selection and three-dimensional microniche culture allows highly efficient endothelial differentiation and ischemic tissue repair from human pluripotent stem cells. Stem Cell Research and Therapy, 2017, 8, 6.	5.5	19
38	Stem Cells: Hepatic Differentiation of Human Embryonic Stem Cells as Microscaled Multilayered Colonies Leading to Enhanced Homogeneity and Maturation (Small 21/2014). Small, 2014, 10, 4310-4310.	10.0	18
39	Physical Properties of Implanted Porous Bioscaffolds Regulate Skin Repair: Focusing on Mechanical and Structural Features. Advanced Healthcare Materials, 2018, 7, e1700894.	7.6	18
40	Intra-articular Injection of Cell-laden 3D Microcryogels Empower Low-dose Cell Therapy for Osteoarthritis in a Rat Model. Cell Transplantation, 2020, 29, 096368972093214.	2.5	18
41	Preconditioning of mesenchymal stromal cells toward nucleus pulposus-like cells by microcryogels-based 3D cell culture and syringe-based pressure loading system., 2017, 105, 507-520.		17
42	Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs. Science Advances, 2021, 7, .	10.3	16
43	Functional Nanoparticles Activate a Decellularized Liver Scaffold for Blood Detoxification. Small, 2016, 12, 2067-2076.	10.0	15
44	Targeted cell therapy for partial-thickness cartilage defects using membrane modified mesenchymal stem cells by transglutaminase 2. Biomaterials, 2021, 275, 120994.	11.4	14
45	Regeneration of hair and other skin appendages: A microenvironmentâ€centric view. Wound Repair and Regeneration, 2016, 24, 759-766.	3.0	12
46	<p>Construction of Microunits by Adipose-Derived Mesenchymal Stem Cells Laden with Porous Microcryogels for Repairing an Acute Achilles Tendon Rupture in a Rat Model</p> . International Journal of Nanomedicine, 2020, Volume 15, 7155-7171.	6.7	12
47	Asporin inhibits collagen matrixâ€mediated intercellular mechanocommunications between fibroblasts during keloid progression. FASEB Journal, 2021, 35, e21705.	0.5	12
48	Dew inspired breathing-based detection of genetic point mutation visualized by naked eye. Scientific Reports, 2014, 4, 6300.	3.3	11
49	Efficient endothelial and smooth muscle cell differentiation from human pluripotent stem cells through a simplified insulin-free culture system. Biomaterials, 2021, 271, 120713.	11.4	11
50	Preferential sensing and response to microenvironment stiffness of human dermal fibroblast cultured on protein micropatterns fabricated by 3D multiphoton biofabrication. Scientific Reports, 2017, 7, 12402.	3.3	10
51	Mechanical microenvironment as a key cellular regulator in the liver. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 289-298.	3.4	10
52	CD90low MSCs modulate intratumoral immunity to confer antitumor activity in a mouse model of ovarian cancer. Oncotarget, 2019, 10, 4479-4491.	1.8	10
53	Evaluation of intervertebral disc regeneration with injection of mesenchymal stem cells encapsulated in PEGDA-microcryogel delivery system using quantitative T2 mapping: a study in canines. American Journal of Translational Research (discontinued), 2019, 11, 2028-2041.	0.0	9
54	Comparison of Chondrocytes in Knee Osteoarthritis and Regulation by Scaffold Pore Size and Stiffness. Tissue Engineering - Part A, 2021, 27, 223-236.	3.1	8

#	Article	IF	CITATIONS
55	TGase-mediated cell membrane modification and targeted cell delivery to inflammatory endothelium. Biomaterials, 2021, 269, 120276.	11.4	8
56	TGaseâ€Enhanced Microtissue Assembly in 3Dâ€Printedâ€Templateâ€Scaffold (3Dâ€MAPS) for Large Tissue Defe Reparation. Advanced Healthcare Materials, 2020, 9, 2000531.	^{2C‡} 7.6	7
57	Physically entrapped gelatin in polyethylene glycol scaffolds for three-dimensional chondrocyte culture. Journal of Bioactive and Compatible Polymers, 2016, 31, 513-530.	2.1	6
58	Characteristics of amino acid substitutions within the "a―determinant region of hepatitis B virus in chronically infected patients with coexisting HBsAg and anti-HBs. Clinics and Research in Hepatology and Gastroenterology, 2020, 44, 923-931.	1.5	5
59	Nanostructural morphology master-regulated the cell capture efficiency of multivalent aptamers. RSC Advances, 2015, 5, 39791-39798.	3.6	3
60	3D Microtissues for Injectable Regenerative Therapy and High-throughput Drug Screening. Journal of Visualized Experiments, 2017, , .	0.3	3
61	<p>Association of IFNL3 rs12979860 polymorphism with HCV-related hepatocellular carcinoma susceptibility in a Chinese population</p> . Clinical and Experimental Gastroenterology, 2019, Volume 12, 433-439.	2.3	3
62	Consistent apparent Young's modulus of human embryonic stem cells and derived cell types stabilized by substrate stiffness regulation promotes lineage specificity maintenance. Cell Regeneration, 2020, 9, 15.	2.6	2
63	Synthetic liver fibrotic niche extracts achieve inÂvitro hepatoblasts phenotype enhancement and expansion. IScience, 2021, 24, 103303.	4.1	1
64	Large-Scale Expansion of Umbilical Cord Mesenchymal Stem Cells with Microcarrier Tablets in Bioreactor. Methods in Molecular Biology, 2021, , 113.	0.9	1
65	3D biomaterial P scaffolds carrying umbilical cord mesenchymal stem cells improve biointegration of keratoprosthesis. Biomedical Materials (Bristol), 2022, 17, 055004.	3.3	1
66	Stem Cells: Patterned Differentiation of Individual Embryoid Bodies in Spatially Organized 3D Hybrid Microgels (Adv. Mater. 46/2010). Advanced Materials, 2010, 22, 5220-5220.	21.0	0
67	Profile of drug resistance mutations in nucleos(t)ide analogue-experienced chronic hepatitis B patients in Tianjin, China. International Journal of Antimicrobial Agents, 2018, 52, 735-736.	2.5	0