Osami Sakata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8438358/publications.pdf

Version: 2024-02-01

53794 49909 9,977 361 45 87 citations h-index g-index papers 374 374 374 10953 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phase Control of Solid-Solution Nanoparticles beyond the Phase Diagram for Enhanced Catalytic Properties. ACS Materials Au, 2022, 2, 110-116.	6.0	4
2	Electronic states of gallium oxide epitaxial thin films and related atomic arrangement. Applied Surface Science, 2022, 578, 151943.	6.1	4
3	Polar-axis-oriented epitaxial tetragonal (Bi,K)TiO3 films with large remanent polarization deposited below Curie temperature by a hydrothermal method. Applied Physics Letters, 2022, 120, 022903.	3.3	6
4	Noble-Metal High-Entropy-Alloy Nanoparticles: Atomic-Level Insight into the Electronic Structure. Journal of the American Chemical Society, 2022, 144, 3365-3369.	13.7	94
5	Hydrogen absorption and diffusion behaviors in cube-shaped palladium nanoparticles revealed by ambient-pressure X-ray photoelectron spectroscopy. Applied Surface Science, 2022, 587, 152797.	6.1	7
6	Compositional dependence of structures and hydrogen evolution reaction activity of platinum-group-metal quinary RuRhPdIrPt alloy nanoparticles. Chemical Communications, 2022, 58, 6421-6424.	4.1	5
7	Continuous-Flow Reactor Synthesis for Homogeneous $1\mathrm{nm}$ -Sized Extremely Small High-Entropy Alloy Nanoparticles. Journal of the American Chemical Society, 2022, 144, 11525-11529.	13.7	60
8	Enhancement of crystal anisotropy and ferroelectricity by decreasing thickness in (Al,Sc)N films. Journal of the Ceramic Society of Japan, 2022, 130, 436-441.	1.1	11
9	Highly-crystalline 6 inch free-standing GaN observed using X-ray diffraction topography. CrystEngComm, 2021, 23, 1628-1633.	2.6	4
10	Efficient overall water splitting in acid with anisotropic metal nanosheets. Nature Communications, 2021, 12, 1145.	12.8	124
11	Electricâ€Fieldâ€Induced Ferroelectricity in 5%Yâ€doped Hf _{0.5} Zr _{0.5} O ₂ : Transformation from the Paraelectric Tetragonal Phase to the Ferroelectric Orthorhombic Phase. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000589.	2.4	23
12	Highly Stable and Active Solidâ€Solutionâ€Alloy Threeâ€Way Catalyst by Utilizing Configurationalâ€Entropy Effect. Advanced Materials, 2021, 33, e2005206.	21.0	22
13	Large thermal hysteresis of ferroelectric transition in HfO2-based ferroelectric films. Applied Physics Letters, 2021, 118, .	3.3	19
14	Non-oxidative propane dehydrogenation over alumina-supported Co-V oxide catalysts. Applied Catalysis A: General, 2021, 614, 118036.	4.3	13
15	Epitaxial Stabilization of Complete Solid-solution β-(Al _{<i>x</i>} O ₃ (100) Films by Pulsed-laser Deposition. Crystal Growth and Design, 2021, 21, 2844-2849.	3.0	13
16	Electricâ€Fieldâ€Induced Ferroelectricity in 5%Yâ€doped Hf _{0.5} Zr _{0.5} O ₂ : Transformation from the Paraelectric Tetragonal Phase to the Ferroelectric Orthorhombic Phase. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2170023.	2.4	1
17	Mechanism of Hydrogen Storage and Structural Transformation in Bimetallic Pd–Pt Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 23502-23512.	8.0	9
18	Local Structure Properties of Hydrogenated and Nonhydrogenated Amorphous In–Ga–Zn–O Thin Films Using XAFS and High-Energy XRD. Journal of Physical Chemistry C, 2021, 125, 13619-13628.	3.1	1

#	Article	IF	Citations
19	Physical properties of YB66 and consideration of possible use for high-resolution X-ray optics. Journal of Applied Physics, 2021, 130, .	2.5	1
20	Investigation of microstructure and hydrogen absorption properties of bulk immiscible AgRh alloy nanoparticles. Journal of Alloys and Compounds, 2021, 869, 159268.	5.5	2
21	Structural Characterization of the Delithiated Noncrystalline Phase in a Li-Rich Li ₂ VO ₂ F Cathode Material. Chemistry of Materials, 2021, 33, 5943-5950.	6.7	8
22	Suppression Mechanisms of the Solid-Electrolyte Interface Formation at the Triple-Phase Interfaces in Thin-Film Li-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34027-34032.	8.0	0
23	Thickness scaling of (Al _{0.8} Sc _{0.2})N films with remanent polarization beyond 100ÂμCÂcm ^{â^2} around 10Ânm in thickness. Applied Physics Express, 2021, 14, 105501.	2.4	30
24	Strain-Controlled Spin Transition in Heterostructured Metal–Organic Framework Thin Film. Journal of the American Chemical Society, 2021, 143, 16128-16135.	13.7	18
25	Investigation of Local Structure and Enhanced Thermal Stability of Ir-Doped PdRu Nanoparticles for Three-Way Catalytic Applications. Journal of Physical Chemistry C, 2021, 125, 20583-20591.	3.1	3
26	Domain structure transition in compressively strained (100)/(001) epitaxial tetragonal PZT film. Journal of Applied Physics, 2021, 129, 024101.	2.5	2
27	Chemical and Electronic Investigation of Buried NiO _{1â^Î'} , PCBM, and PTAA/MAPbI _{3â€"<i>x</i>} Cl _{<i>x</i>} Interfaces Using Hard X-ray Photoelectron Spectroscopy and Transmission Electron Microscopy. ACS Applied Materials & Amp; Interfaces, 2021, 13, 50481-50490.	8.0	5
28	Total x-ray scattering setup for crystalline particles at SPring-8 BL15XU NIMS beamline. Review of Scientific Instruments, 2021, 92, 113905.	1.3	0
29	Thickness dependence of phase stability in epitaxial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:r mathvariant="normal">O<mml:mn>2</mml:mn></mml:r></mml:mrow></mml:mrow></mml:math> films. Physical Review Materials, 2021, 5, .	nsub> <mr 2.4</mr 	nl:mi>Hf
30	Discovery of face-centred cubic Os nanoparticles. Chemical Communications, 2020, 56, 372-374.	4.1	20
31	Rational Synthesis for a Noble Metal Carbide. Journal of the American Chemical Society, 2020, 142, 1247-1253.	13.7	15
32	Dimer rattling mode induced low thermal conductivity in an excellent acoustic conductor. Nature Communications, 2020, 11, 5197.	12.8	27
33	Enhanced intrinsic piezoelectric response in (001)-epitaxial single <i>c</i> -domain Pb(Zr,Ti)O3 nanorods. Applied Physics Letters, 2020, 117, .	3.3	3
34	Modifying the crystal structures of Fe2O3-doped NiO epitaxial thin films grown at room temperature by controlling the oxygen partial pressure. Applied Surface Science, 2020, 533, 147432.	6.1	3
35	On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chemical Science, 2020, 11, 12731-12736.	7.4	142
36	Enhancement of Solar Cell Performance of Electrodeposited Ti/n-Cu2O/p-Cu2O/Au Homojunction Solar Cells by Interface and Surface Modification. Crystals, 2020, 10, 609.	2.2	9

#	Article	IF	CITATIONS
37	Crystalline to amorphous transformation in solid-solution alloy nanoparticles induced by boron doping. Chemical Communications, 2020, 56, 12941-12944.	4.1	8
38	Controlling oxygen coordination and valence of network forming cations. Scientific Reports, 2020, 10, 7178.	3.3	12
39	Very sharp diffraction peak in nonglass-forming liquid with the formation of distorted tetraclusters. NPG Asia Materials, 2020, 12, .	7.9	28
40	Hydrogen absorption and desorption on Rh nanoparticles revealed by <i>in situ</i> dispersive X-ray absorption fine structure spectroscopy. RSC Advances, 2020, 10, 19751-19758.	3.6	0
41	Structural Dynamics of Adsorption Equilibrium for Iodine Adsorbed on Au(111). Journal of Physical Chemistry C, 2020, 124, 17711-17716.	3.1	1
42	Thickness- and orientation- dependences of Curie temperature in ferroelectric epitaxial Y doped HfO ₂ films. Japanese Journal of Applied Physics, 2020, 59, SGGB04.	1.5	22
43	Surface morphology smoothing of a 2 inch-diameter GaN homoepitaxial layer observed by X-ray diffraction topography. RSC Advances, 2020, 10, 1878-1882.	3.6	3
44	Optical and structural investigations on titanium oxynitride films for visible-UV photocatalytic applications. Journal of Applied Physics, 2020, 127, .	2.5	3
45	Structure and properties of densified silica glass: characterizing the order within disorder. NPG Asia Materials, 2020, 12, .	7.9	57
46	Calculation of total scattering from a crystalline structural model based on experimental optics parameters. Journal of Applied Crystallography, 2020, 53, 671-678.	4.5	9
47	Fabrication of (Pb _{0.9} Sr _{0.1})TiO ₃ /SrTiO ₃ /SrTiO ₃ 0.13/SrTiO ₃ /SrTiO <sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub>/SrTiO<sub< td=""><td>ub></td><td>2</td></sub<></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	ub>	2
48	Understanding Diffraction from Disordered Materials and the Extraction of Topology Hidden in the Pairwise Correlations by Persistent Homology. Nihon Kessho Gakkaishi, 2020, 62, 43-50.	0.0	0
49	The relationship between crystalline disorder and electronic structure of Pd nanoparticles and their hydrogen storage properties. RSC Advances, 2019, 9, 21311-21317.	3.6	8
50	Anisotropic mosaicity and lattice-plane twisting of an <i>m</i> -plane GaN homoepitaxial layer. CrystEngComm, 2019, 21, 4036-4041.	2.6	5
51	Investigation of selective chemisorption of fcc and hcp Ru nanoparticles using X-ray photoelectron spectroscopy analysis. Journal of Catalysis, 2019, 380, 247-253.	6.2	5
52	Hydrogen effect on Pt/Al2O3/GaN metal-oxide-semiconductor capacitors. Japanese Journal of Applied Physics, 2019, 58, 100915.	1.5	5
53	Time-resolved X-ray diffraction system for study of Pb(Zr, Ti)O3 films under a temporal electric field at BL15XU, SPring-8. Review of Scientific Instruments, 2019, 90, 093001. Ferroelastic domain motion by pulsed electric field in <mml:math< td=""><td>1.3</td><td>3</td></mml:math<>	1.3	3
54	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow>	nn>1113.2	nml:mn> <mn< td=""></mn<>

4

#	Article	IF	Citations
55	Facile preparation of hybrid thin films composed of spin-crossover nanoparticles and carbon nanotubes for electrical memory devices. Dalton Transactions, 2019, 48, 7074-7079.	3.3	17
56	Correlation between the electronic/local structure and CO-oxidation activity of Pd _x Ru _{1â^'x} alloy nanoparticles. Nanoscale Advances, 2019, 1, 546-553.	4.6	12
57	A trial for distinguish of Mn3+ and Mn4+ ions in LiMn2O4 by anomalous powder x-ray diffraction with focused beam flat sample method. AIP Conference Proceedings, 2019 , , .	0.4	1
58	Ultrahigh-pressure form of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Si</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> glass with dense pyrite-type crystalline homology. Physical Review B, 2019, 99, .	3.2	44
59	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>B</mml:mi></mml:mrow> <td></td> <td>10</td>		10
60	mathvariant="normal">a <mmkm>2</mmkm> <mmkmi>CrMn</mmkmi> <mmkmsub><i 125,="" 2019,="" 225101.<="" and="" applied="" at="" epitaxially="" fe2val="" grown="" interfaces="" journal="" mo="" of="" phonon="" physics,="" scattering="" superlattices.="" td="" the="" w=""><td>mml:mi 2.5</td><td>12</td></i></mmkmsub>	mml:mi 2.5	12
61	Lattice-plane bending angle modulation of Mg-doped GaN homoepitaxial layer observed by X-ray diffraction topography. CrystEngComm, 2019, 21, 2281-2285.	2.6	4
62	Colossal barocaloric effects in plastic crystals. Nature, 2019, 567, 506-510.	27.8	253
63	Mapping of a Lattice-Plane Tilting in a <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ga</mml:mi><mml:mi mathvariant="normal">N</mml:mi></mml:mrow></mml:math> Wafer Using Energy-Resolved X-Ray Diffraction Topography. Physical Review Applied. 2019. 11	3.8	5
64	Tuning of structural, optical band gap, and electrical properties of room-temperature-grown epitaxial thin films through the Fe2O3:NiO ratio. Scientific Reports, 2019, 9, 4304.	3.3	31
65	Effects of heat treatment and in situ high-temperature X-ray diffraction study on the formation of ferroelectric epitaxial Y-doped HfO ₂ film. Japanese Journal of Applied Physics, 2019, 58, SBBB09.	1.5	34
66	Effects of interfacial structure of Pd–Pt nanoparticles on hydrogen solubility. Journal of Alloys and Compounds, 2019, 791, 1263-1269.	5.5	10
67	Effect of Bath pH on Electronic and Morphological Properties of Electrodeposited Cu ₂ 0 Thin Films. Journal of the Electrochemical Society, 2019, 166, D113-D119. Electric-Field-Driven Nanosecond Ferroelastic-Domain Switching Dynamics in Epitaxial <mml:math< td=""><td>2.9</td><td>18</td></mml:math<>	2.9	18
68	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>Pb</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>Zr</mml:mi><mml:mo>,</mml:mo><mml:mi>Ti</mml:mi><mml:mo) etc<="" td="" tj=""><td>Q̄q̇0 0 0 rg</td><td>g<mark>16</mark> /Overloc</td></mml:mo)></mml:mrow>	Q̄q̇0 0 0 rg	g <mark>16</mark> /Overloc
69	mathvariant="normal">O <mml:mrow><mml:mn>3</mml:mn></mml:mrow> <td></td> <td>row>5</td>		row>5
70	Understanding diffraction patterns of glassy, liquid and amorphous materials via persistent homology analyses. Journal of the Ceramic Society of Japan, 2019, 127, 853-863.	1.1	50
71	Reverse Monte Carlo modeling for local structures of noble metal nanoparticles using high-energy XRD and EXAFS. RSC Advances, 2019, 9, 29511-29521.	3.6	15
72	Surface X-ray diffraction study of annealed single-crystal rutile TiO2 (001) surface. lonics, 2019, 25, 1879-1886.	2.4	4

#	Article	IF	Citations
73	A middle energy-bandwidth X-ray monochromator for high-flux synchrotron diffraction: revisiting asymmetrically cut silicon crystals. Journal of Synchrotron Radiation, 2019, 26, 750-755.	2.4	25
74	Synchrotron analysis of structure transformations in V and V/Ag thin films. Vacuum, 2018, 150, 186-195.	3.5	4
75	Investigation of residual stress in lead-free BNT-based ceramic/ceramic composites. Acta Materialia, 2018, 148, 432-441.	7.9	32
76	Synchrotron X-ray diffraction characterization of the inheritance of GaN homoepitaxial thin films grown on selective growth substrates. CrystEngComm, 2018, 20, 2861-2867.	2.6	8
77	Potential Dependence of the Buckling Structure of the Interfacial Water Bilayer on a Graphene Electrode. Journal of Physical Chemistry C, 2018, 122, 7795-7800.	3.1	4
78	Analyzing the Boundary Thermal Resistance of Epitaxially Grown Fe2VAI/W Layers by Picosecond Time-Domain Thermoreflectance. Journal of Electronic Materials, 2018, 47, 3113-3118.	2.2	3
79	Characterization of a 4-inch GaN wafer by X-ray diffraction topography. CrystEngComm, 2018, 20, 7761-7765.	2.6	11
80	Ferroelectricity mediated by ferroelastic domain switching in HfO2-based epitaxial thin films. Applied Physics Letters, 2018, 113, .	3.3	69
81	Effect of hydrophobic cations on the oxygen reduction reaction on singleâ€'crystal platinum electrodes. Nature Communications, 2018, 9, 4378.	12.8	87
82	Domain Switching by Applied Electric Field in (001) and (111)-epitaxial (K <inf>0.5</inf> Na <inf>0.5</inf>)NbO <inf>3</inf> Films., 2018,,.		0
83	Temperature Dependent Octahedral Tilting Behaviors of Monoclinic and Tetragonal SrRuO3 Thin Films. Journal of the Korean Physical Society, 2018, 73, 1529-1534.	0.7	3
84	Domain structure transition from two to three dimensions in tensile strained (100)/(001)-oriented epitaxial tetragonal PZT film. Applied Physics Letters, 2018, 113, .	3.3	8
85	Electronic origin of hydrogen storage in MOF-covered palladium nanocubes investigated by synchrotron X-rays. Communications Chemistry, 2018, 1, .	4.5	24
86	<i>Operando</i> structural study of non-aqueous Li–air batteries using synchrotron-based X-ray diffraction. RSC Advances, 2018, 8, 26293-26299.	3.6	13
87	Thickness-dependent crystal structure and electric properties of epitaxial ferroelectric Y2O3-HfO2 films. Applied Physics Letters, 2018, 113, .	3.3	48
88	Lattice constant, bond-orientational order, and solid solubility of PdPt bimetallic nanoparticles. Applied Physics Letters, 2018, 113, .	3.3	12
89	Size effects on rhodium nanoparticles related to hydrogen-storage capability. Physical Chemistry Chemical Physics, 2018, 20, 15183-15191.	2.8	11
90	Time response demonstration of in situ lattice deformation under an applied electric field by synchrotron-based time-resolved X-ray diffraction in polar-axis-oriented epitaxial Pb(Zr,Ti)O3 film. Japanese Journal of Applied Physics, 2018, 57, 0902B8.	1.5	2

#	Article	IF	Citations
91	Local Geometry and Electronic Properties of Nickel Nanoparticles Prepared via Thermal Decomposition of Ni-MOF-74. Inorganic Chemistry, 2018, 57, 10072-10080.	4.0	18
92	Evaluation of lattice curvature and crystalline homogeneity for 2-inch GaN homo-epitaxial layer. AIP Advances, 2018, 8, .	1.3	5
93	Lattice-plane orientation mapping of homo-epitaxial GaN(0001) thin films via grazing-incidence X-ray diffraction topography in 2-in. wafer. Applied Physics Express, 2018, 11, 081002.	2.4	11
94	Spatial coherence of the insulating phase in quasi-two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LaNiO</mml:mi><mml:mn>3<td>nl:138112><td>nmltønsub></td></td></mml:mn></mml:msub></mml:math>	nl:138112> <td>nmltønsub></td>	nm ltø nsub>
95	Characterization of the ScAlMgO4 cleaving layer by X-ray crystal truncation rod scattering. Journal of Applied Physics, 2018, 123, .	2.5	13
96	Ultrafast observation of lattice dynamics in laser-irradiated gold foils. Applied Physics Letters, 2017, 110, .	3.3	20
97	Electronic Structure Evolution with Composition Alteration of RhxCuy Alloy Nanoparticles. Scientific Reports, 2017, 7, 41264.	3.3	12
98	Interfacial Structure of PtNi Surface Alloy on Pt(111) Electrode for Oxygen Reduction Reaction. ACS Omega, 2017, 2, 1858-1863.	3.5	16
99	Thickness and structure of thin films determined by background analysis in hard X-ray photoelectron spectroscopy. Journal of Applied Physics, 2017, 121, .	2.5	18
100	Effect of the film thickness on the crystal structure and ferroelectric properties of (Hf 0.5 Zr 0.5)O 2 thin films deposited on various substrates. Materials Science in Semiconductor Processing, 2017, 70, 239-245.	4.0	41
101	Superconductivity in Ti4O7 and Î ³ -Ti3O5 films. Scientific Reports, 2017, 7, 12544.	3.3	47
102	Air/Liquid Interfacial Nanoassembly of Molecular Building Blocks into Preferentially Oriented Porous Organic Nanosheet Crystals <i>via</i> Hydrogen Bonding. ACS Nano, 2017, 11, 10875-10882.	14.6	23
103	A highly crystalline oriented metal–organic framework thin film with an inorganic pillar. Chemical Communications, 2017, 53, 10112-10115.	4.1	14
104	Electric-field-induced lattice distortion in epitaxial BiFeO3 thin films as determined by <i>in situ</i> time-resolved x-ray diffraction. Applied Physics Letters, 2017, 111, .	3.3	3
105	Effects of phase fraction on superconductivity of low-valence eutectic titanate films. Journal of Applied Physics, 2017, 122, .	2.5	17
106	In-situ observation of ultrafast $90\hat{A}^{\circ}$ domain switching under application of an electric field in $(100)/(001)$ -oriented tetragonal epitaxial Pb(Zr0.4Ti0.6)O3 thin films. Scientific Reports, 2017, 7, 9641.	3.3	23
107	Lattice distortion and electronic structure of magnesium-doped nickel oxide epitaxial thin films. Physical Review B, 2017, 95, .	3.2	18
108	Real–time observation of interfacial ions during electrocrystallization. Scientific Reports, 2017, 7, 914.	3.3	9

#	Article	IF	Citations
109	Charge screening strategy for domain pattern control in nano-scale ferroelectric systems. Scientific Reports, 2017, 7, 5236.	3.3	14
110	Disappearance of the Superionic Phase Transition in Sub-5 nm Silver Iodide Nanoparticles. Nano Letters, 2017, 17, 5273-5276.	9.1	7
111	Change in the Crystallite Orientation of Poly(ethylene oxide)/Cellulose Nanofiber Composite Films. Biomacromolecules, 2017, 18, 4411-4415.	5.4	9
112	Hydrogen storage and stability properties of Pd–Pt solid-solution nanoparticles revealed via atomic and electronic structure. Scientific Reports, 2017, 7, 14606.	3.3	30
113	Fabrication and Structural Characterization of an Ultrathin Film of a Two-Dimensional-Layered Metal–Organic Framework, {Fe(py) ₂ [Ni(CN) ₄]} (py = pyridine). Inorganic Chemistry, 2017, 56, 7606-7609.	4.0	32
114	Stacking fault density and bond orientational order of fcc ruthenium nanoparticles. Applied Physics Letters, 2017, 111, 253101.	3.3	8
115	Orientation change with substrate type and composition in (100)/(001)-oriented epitaxial tetragonal Pb(Zr <i></i> >(i>Ti _{1−} _x)O ₃ films. Journal of the Ceramic Society of Japan, 2017, 125, 458-462.	1.1	3
116	Dynamic fracture of tantalum under extreme tensile stress. Science Advances, 2017, 3, e1602705.	10.3	41
117	Annealing effects of the untreated and sulfur-treated electrodeposited n-type and p-type cuprous oxide thin films. Physica Status Solidi (B): Basic Research, 2016, 253, 765-769.	1.5	6
118	Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films. Applied Physics Letters, 2016, 108, .	3.3	187
119	Guest-Induced Two-Way Structural Transformation in a Layered Metal–Organic Framework Thin Film. Journal of the American Chemical Society, 2016, 138, 16787-16793.	13.7	54
120	Growth of (111)-oriented epitaxial and textured ferroelectric Y-doped HfO2 films for downscaled devices. Applied Physics Letters, 2016, 109, .	3.3	62
121	Orientation control and domain structure analysis of $\{100\}$ -oriented epitaxial ferroelectric orthorhombic HfO2-based thin films. Journal of Applied Physics, 2016, 119, .	2.5	57
122	Note: An X-ray powder diffractometer with a wide scattering-angle range of $72\hat{A}^{\circ}$ using asymmetrically positioned one-dimensional detectors. Review of Scientific Instruments, 2016, 87, 016106.	1.3	5
123	Formation of (111) orientation-controlled ferroelectric orthorhombic HfO2 thin films from solid phase via annealing. Applied Physics Letters, 2016, 109, .	3.3	29
124	Large irreversible non- $180 \hat{A}^\circ$ domain switching after poling treatment in Pb(Zr, Ti)O3 films. Applied Physics Letters, 2016, 108, .	3.3	10
125	Fabrication and characterization of (111) -epitaxial Pb(Zr0.35Ti0.65)O3/Pb(Zr0.65Ti0.35)O3artificial superlattice thin films. Japanese Journal of Applied Physics, 2016, 55, 10TA20.	1.5	2
126	A three-dimensional accordion-like metal–organic framework: synthesis and unconventional oriented growth on a surface. Chemical Communications, 2016, 52, 6017-6020.	4.1	18

#	Article	IF	Citations
127	Effect of cation doping on ionic conductivity and crystal structure of oxyapatite-type lanthanum silicates. Solid State Ionics, 2016, 289, 106-112.	2.7	5
128	Size dependent lattice constant change of thiol self-assembled monolayer modified Au nanoclusters studied by grazing incidence x-ray diffraction. Electrochemistry Communications, 2016, 65, 35-38.	4.7	11
129	Confirmation of no Structural and Chemical Changes in Curie Temperature Variable Co Ultrathin Films by Electric Field. Zeitschrift Fur Physikalische Chemie, 2016, 230, .	2.8	7
130	Crystal Isomers of ScFeO ₃ . Crystal Growth and Design, 2016, 16, 5214-5222.	3.0	25
131	Strain evolution of epitaxial tetragonal-like BiFeO3thin films on LaAlO3(001) substrates prepared by sputtering and their bulk photovoltaic effect. Japanese Journal of Applied Physics, 2016, 55, 101501.	1.5	15
132	Size dependence of structural parameters in fcc and hcp Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data. Scientific Reports, 2016, 6, 31400.	3.3	50
133	Epitaxial synthesis and physical properties of double-perovskite oxide Sr ₂ CoRuO ₆ thin films. Journal of Physics Condensed Matter, 2016, 28, 436005.	1.8	6
134	Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure. Physical Chemistry Chemical Physics, 2016, 18, 30622-30629.	2.8	39
135	The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film. Scientific Reports, 2016, 6, 32931.	3.3	194
136	Microscopic Observation of Degradation of LaNiO ₃ Ultrathin Films Caused by Air Exposure. E-Journal of Surface Science and Nanotechnology, 2016, 14, 14-16.	0.4	2
137	Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method. AIP Conference Proceedings, 2016, , .	0.4	3
138	Structural studies of metal nanoparticles using high-energy x-ray diffraction. AIP Conference Proceedings, 2016, , .	0.4	5
139	<i>Indirect</i> monitoring shot-to-shot shock waves strength reproducibility during pump–probe experiments. Journal of Applied Physics, 2016, 120, .	2.5	5
140	Fabrication of Tetragonal Pb(Zr,Ti)O ₃ Nanorods by Focused Ion Beam and Characterization of the Domain Structure. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 1642-1646.	3.0	3
141	Dynamical Response of the Electric Double Layer Structure of the DEME-TFSI Ionic Liquid to Potential Changes Observed by Time-Resolved X-ray Reflectivity. Zeitschrift Fur Physikalische Chemie, 2016, 230, 577-585.	2.8	6
142	Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nature Chemistry, 2016, 8, 377-383.	13.6	212
143	Synchrotron X-ray Scattering Measurements of Disordered Materials. Zeitschrift Fur Physikalische Chemie, 2016, 230, .	2.8	24
144	Domain structure of tetragonal Pb(Zr,Ti)O ₃ nanorods and its size dependence. Japanese Journal of Applied Physics, 2015, 54, 10NA07.	1.5	8

#	Article	IF	CITATIONS
145	Phase transitions associated with competing order parameters in compressively strained <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrTiO</mml:mi><mml:mn>3<td>ml:n3∩2 <td>ոտI։₁₂sub></td></td></mml:mn></mml:msub></mml:math>	ml:n 3∩2 <td>ոտI։₁₂sub></td>	ոտI ։₁₂ sub>
146	Negligible substrate clamping effect on piezoelectric response in (111)-epitaxial tetragonal Pb(Zr, Ti)O3 films. Journal of Applied Physics, 2015, 118 , .	2.5	21
147	Orientation control of epitaxial tetragonal Pb(ZrxTi1â^'x)O3 thin films grown on (100)KTaO3 substrates by tuning the Zr/(Zr + Ti) ratio. Applied Physics Letters, 2015, 107, .	3.3	11
148	Fabrication of tetragonal Pb(Zr,Ti)O < inf > 3 < /inf > nanorods by focused ion beam and characterization of the domain structure. , 2015, , .		2
149	Surface X-ray diffraction study and photocatalytic activity of HF-treated single crystal rutile TiO2(001) surface. lonics, 2015, 21, 2495-2501.	2.4	3
150	Remarkable Lattice Shrinkage in Highly Oriented Crystalline Three-Dimensional Metal–Organic Framework Thin Films. Inorganic Chemistry, 2015, 54, 11593-11595.	4.0	27
151	Structural and Thermal Properties of Ternary Narrow-Gap Oxide Semiconductor; Wurtzite-Derived β-CuGaO ₂ . Inorganic Chemistry, 2015, 54, 1698-1704.	4.0	33
152	Synthesis and magnetic properties of double-perovskite oxide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:films. .<="" 2015,="" 91,="" b,="" physical="" review="" td=""><td>mn</td><td>ml:n3:9> </td></mml:films.></mml:msub></mml:mrow></mml:math>	mn	ml:n 3:9 >
153	Epitaxial PbZr <i>_x</i> Ti _{1â^'<i>x</i>} O ₃ Ferroelectric Bilayers with Giant Electromechanical Properties. Advanced Materials Interfaces, 2015, 2, 1500075.	3.7	13
154	Surface Oxidation of Au(111) Electrode in Alkaline Media Studied by Using X-ray Diffraction and Infrared Spectroscopy: Effect of Alkali Metal Cation on the Alcohol Oxidation Reactions. Journal of Physical Chemistry C, 2015, 119, 23586-23591.	3.1	16
155	Stabilizing the ferroelectric phase in doped hafnium oxide. Journal of Applied Physics, 2015, 118, .	2.5	424
156	Structure of \hat{l}^2 -AgGaO2; ternary \hat{l} ="Ill \hat{l} ="VI2 oxide semiconductor with a wurtzite-derived structure. Journal of Solid State Chemistry, 2015, 222, 66-70.	2.9	18
157	Atomic disorder of Li _{0.5} Ni _{0.5} O thin films caused by Li doping: estimation from X-ray Debyeâ€"Waller factors. Journal of Applied Crystallography, 2015, 48, 1896-1900.	4.5	2
158	Lattice spacings and domain sizes of room-temperature epitaxial Li x Ni $1\hat{a}$ 'x O (0 \hat{a} % x \hat{a} % 0.48) thin films grown on ultra-smooth sapphire substrates. Applied Surface Science, 2014, 320, 787-790.	6.1	8
159	Femtosecond laser-driven shock-induced dislocation structures in iron. Applied Physics Express, 2014, 7, 122704.	2.4	15
160	Direct observation of intrinsic piezoelectricity of Pb(Zr,Ti)O3 by time-resolved x-ray diffraction measurement using single-crystalline films. Applied Physics Letters, 2014, 105, .	3.3	24
161	The valence band structure of AgxRh1–x alloy nanoparticles. Applied Physics Letters, 2014, 105, .	3.3	27
162	Hard X-ray photoelectron spectroscopy of Li <i>x</i> Ni1â^' <i>x</i> O epitaxial thin films with a high lithium content. Journal of Chemical Physics, 2014, 141, 044718.	3.0	3

#	Article	IF	Citations
163	Towards Rational Modulation of Inâ€Plane Molecular Arrangements in Metal–Organic Framework Nanosheets. ChemPlusChem, 2014, 79, 1352-1360.	2.8	50
164	Thin films of spin-crossover coordination polymers with large thermal hysteresis loops prepared by nanoparticle spin coating. Chemical Communications, 2014, 50, 10074-10077.	4.1	28
165	Structural Dynamics of the Electrical Double Layer during Capacitive Charging/Discharging Processes. Journal of Physical Chemistry C, 2014, 118, 22136-22140.	3.1	13
166	Enhanced oxygen barrier property of poly(ethylene oxide) films crystallite-oriented by adding cellulose single nanofibers. Polymer, 2014, 55, 5843-5846.	3.8	21
167	Trapping of a Spatial Transient State During the Framework Transformation of a Porous Coordination Polymer. Journal of the American Chemical Society, 2014, 136, 4938-4944.	13.7	24
168	Controlling of crystallite orientation for poly(ethylene oxide) thin films with cellulose single nano-fibers. Polymer, 2014, 55, 4401-4404.	3.8	14
169	Surface X-ray Scattering of Pd(110) and Pd(311) in Electrochemical Environments. Electrochemistry, 2014, 82, 351-354.	1.4	6
170	Influence of Confined Polymer Structure on Proton Transport Property in Sulfonated Polyimide Thin Films. Electrochemistry, 2014, 82, 865-869.	1.4	12
171	Cross-sectional X-ray microdiffraction study of a thick AlN film grown on a trench-patterned AlN/l±-Al2O3 template. Journal of Crystal Growth, 2013, 381, 37-42.	1.5	10
172	Ethanol Oxidation on Well-Ordered PtSn Surface Alloy on Pt(111) Electrode. Journal of Physical Chemistry C, 2013, 117, 18139-18143.	3.1	19
173	Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing. Science, 2013, 339, 193-196.	12.6	483
174	Grazing-incidence wide-angle X-ray diffraction study on molecular aggregation state of imprinted polyimide film before and after hard baking. Polymer Bulletin, 2013, 70, 105-115.	3.3	3
175	Programmed crystallization via epitaxial growth and ligand replacement towards hybridizing porous coordination polymer crystals. Dalton Transactions, 2013, 42, 15868.	3.3	27
176	Structure of $Pt(111)$ /lonomer Membrane Interface and Its Bias-Induced Change in Membrane Electrode Assembly. Journal of Physical Chemistry C, 2013, 117, 12168-12171.	3.1	22
177	Grazing Incidence X-Ray Diffraction. Springer Series in Surface Sciences, 2013, , 165-190.	0.3	15
178	X-RAY STANDING WAVE AT GRAZING INCIDENCE AND EXIT. Series on Synchrotron Radiation Techniques and Applications, 2013, , 108-121.	0.2	2
179	Influence of Lattice Distortion Induced by a Vicinal SrTiO3(001) Substrate in Single-Domain BiFeO3Thin Films Prepared by Radio Frequency Planar Magnetron Sputtering. Japanese Journal of Applied Physics, 2013, 52, 09KB03.	1.5	11
180	Epitaxial Synthesis and Electronic Properties of Double-Perovskite Sr ₂ TiRuO ₆ Films. Applied Physics Express, 2013, 6, 105502.	2.4	8

#	Article	IF	CITATIONS
181	Investigation of the near-surface structures of polar InN films by chemical-state-discriminated hard X-ray photoelectron diffraction. Applied Physics Letters, 2013, 102, .	3.3	8
182	Investigation of the Effect of Oxygen on the Near-Surface Electron Accumulation in Nonpolar m-Plane (101ì,,0) InN Film by Hard X-ray Photoelectron Spectroscopy. Japanese Journal of Applied Physics, 2013, 52, 08JD01.	1.5	2
183	Relationship between the photocatalytic activity and crystallographic orientation of rutile TiO ₂ single crystals. Journal of the Ceramic Society of Japan, 2013, 121, 254-257.	1.1	15
184	Effect of Nonâ€Specifically Adsorbed Ions on the Surface Oxidation of Pt(111). ChemPhysChem, 2013, 14, 2426-2431.	2.1	51
185	Development of a synchrotron powder diffractometer with a one-dimensional X-ray detector for analysis of advanced materials. Journal of the Ceramic Society of Japan, 2013, 121, 287-290.	1.1	75
186	Synchrotron X-ray Diffraction Studies of Nanoscale Thin Films and Wires. Nihon Kessho Gakkaishi, 2013, 55, 171-179.	0.0	0
187	Strong Correlation Between Oxygen Donor and Near-Surface Electron Accumulation in Undoped and Mg-Doped In-Polar InN Films. Applied Physics Express, 2012, 5, 031002.	2.4	6
188	External electric field dependence of the structure of the electric double layer at an ionic liquid/Au interface. Applied Physics Letters, 2012, 101, 053122.	3.3	66
189	Influence of Molecular Weight Dispersity of Poly{2-(perfluorooctyl)ethyl acrylate} Brushes on Their Molecular Aggregation States and Wetting Behavior. Macromolecules, 2012, 45, 1509-1516.	4.8	75
190	Interfacial structure of Co porphyrins on $Au(111)$ electrode: Interaction of porphyrin molecules with substrate. Surface Science, 2012, 606, 1560-1564.	1.9	8
191	Step-by-Step Fabrication of a Highly Oriented Crystalline Three-Dimensional Pillared-Layer-Type Metal–Organic Framework Thin Film Confirmed by Synchrotron X-ray Diffraction. Journal of the American Chemical Society, 2012, 134, 9605-9608.	13.7	147
192	Nonlinearity in the high-electric-field piezoelectricity of epitaxial BiFeO3 on SrTiO3. Applied Physics Letters, 2012, 100, 062906.	3.3	14
193	Targeted functionalisation of a hierarchically-structured porous coordination polymer crystal enhances its entire function. Chemical Communications, 2012, 48, 6472.	4.1	48
194	Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nature Materials, 2012, 11, 717-723.	27.5	352
195	Surface X-ray Scattering of Stepped Surfaces of Platinum in an Electrochemical Environment: $Pt(331) = 3(111)-(111)$ and $Pt(511) = 3(100)-(111)$. Langmuir, 2011, 27, 4236-4242.	3.5	22
196	Highly Crystalline Nanofilm by Layering of Porphyrin Metalâ "Organic Framework Sheets. Journal of the American Chemical Society, 2011, 133, 5640-5643.	13.7	304
197	Columnar structure in porous silicon: influence of etching time on pore dynamics and ordering Journal of Applied Physics, 2011, 109, 076106.	2.5	4
198	Self-assembly of highly crystalline two-dimensional MOF sheets on liquid surfaces. CrystEngComm, 2011, 13, 5538.	2.6	34

#	Article	IF	Citations
199	MOF-on-MOF heteroepitaxy: perfectly oriented [Zn2(ndc)2(dabco)]n grown on [Cu2(ndc)2(dabco)]n thin films. Dalton Transactions, 2011, 40, 4954.	3.3	146
200	Porous Coordination Polymer Hybrid Device with Quartz Oscillator: Effect of Crystal Size on Sorption Kinetics. Journal of the American Chemical Society, 2011, 133, 11932-11935.	13.7	98
201	Preparation of ordered 1x1 surface of rutile TiO ₂ (001) for surface x-ray diffraction study. Transactions of the Materials Research Society of Japan, 2011, 36, 535-539.	0.2	6
202	Initial Stages of High-Temperature CaF ₂ /Si(001) Epitaxial Growth Studied by Surface X-Ray Diffraction. Journal of Nanoscience and Nanotechnology, 2011, 11, 2990-2996.	0.9	3
203	Synthesis of submicron metastable phase of silicon using femtosecond laser-driven shock wave. Journal of Applied Physics, 2011, 110, .	2.5	24
204	Characterization of SiGe Layer during Ge Condensation Process by X-ray Diffraction Methods. Japanese Journal of Applied Physics, 2011, 50, 010112.	1.5	3
205	Surface X-ray Scattering of $Pd(111)$ and $Pd(100)$ Electrodes during the Oxygen Reduction Reaction. Electrochemistry, 2011, 79, 256-260.	1.4	11
206	Non-destructive statistical analysis of embedded nanoparticles by X-ray diffraction imaging. Scripta Materialia, 2011, 64, 613-616.	5.2	3
207	Application of synchrotron-based reciprocal-space mapping at a fixed angular position to identification of crystal symmetry of Bi ₄ Ti ₃ O ₁₂ epitaxial thin films. Journal of Applied Crystallography, 2011, 44, 385-391.	4.5	5
208	Radiation-induced melting in coherent X-ray diffractive imaging at the nanoscale. Journal of Synchrotron Radiation, 2011, 18, 580-594.	2.4	9
209	Outer Helmholtz Plane of the Electrical Double Layer Formed at the Solid Electrode–Liquid Interface. ChemPhysChem, 2011, 12, 1430-1434.	2.1	85
210	Sequential Functionalization of Porous Coordination Polymer Crystals. Angewandte Chemie - International Edition, 2011, 50, 8057-8061.	13.8	175
211	X-ray microdiffraction investigation of crystallinity and strain relaxation in Ge thin lines selectively grown on Si(001) substrates. Solid-State Electronics, 2011, 60, 26-30.	1.4	4
212	Ultrafast switching of ferroelastic nanodomains in bilayered ferroelectric thin films. Applied Physics Letters, 2011, 99, 182906.	3.3	21
213	Evidence of lattice tilt and slip in m-plane InGaN/GaN heterostructure. Applied Physics Letters, 2011, 99, 131909.	3.3	48
214	Synchrotron x-ray analyses of crystalline and electronic structures of carbon nanowalls. Applied Physics Letters, 2011, 99, 213110.	3.3	4
215	Structure of the electrical double layer on Ag(100): Promotive effect of cationic species on Br adlayer formation. Physical Review B, 2011, 84, .	3.2	17
216	Dynamical fluctuations in In nanowires on Si(111). Physical Review B, 2011, 84, .	3.2	20

#	Article	IF	Citations
217	Nanometer-Scale Characterization Technique for Si Nanoelectric Materials Using Synchrotron Radiation Microdiffraction. Key Engineering Materials, 2011, 470, 104-109.	0.4	6
218	X-ray Diffraction Study of Electric-field-induced Strains in Polycrystalline BiFeO3 Thin Films at Low Temperature Using Synchrotron Radiation. Journal of the Korean Physical Society, 2011, 59, 2556-2559.	0.7	4
219	Characterization of SiGe Layer during Ge Condensation Process by X-ray Diffraction Methods. Japanese Journal of Applied Physics, 2011, 50, 010112.	1.5	1
220	In-situ lattice-strain analysis of a ferroelectric thin film under an applied pulse electric field. AIP Conference Proceedings, 2010, , .	0.4	19
221	Synchrotron X-ray diffraction study on a single nanowire of PX-phase lead titanate. Journal of the European Ceramic Society, 2010, 30, 3259-3262.	5.7	5
222	Structural change of direct silicon bonding substrates by interfacial oxide out-diffusion annealing. Thin Solid Films, 2010, 518, S147-S150.	1.8	7
223	Monolithic selfâ€sustaining nanographene sheet grown using plasmaâ€enhanced chemical vapor deposition. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 139-143.	1.8	29
224	Microarea strain analysis in GaN-based laser diodes using high-resolution microbeam X-ray diffraction. Physica Status Solidi (B): Basic Research, 2010, 247, 1707-1709.	1.5	3
225	Surface nano-architecture of a metal–organic framework. Nature Materials, 2010, 9, 565-571.	27.5	783
226	Real-time in situ nanoclustering during initial stages of artificial aging of Al–Cu alloys. Journal of Applied Physics, 2010, 107, 024303.	2.5	2
227	High-resolution X-ray microdiffraction analysis of local strain in semiconductor materials. , 2010, , .		1
228	X-ray Microdiffraction Study on Crystallinity of Micron-Sized Ge Films Selectively Grown on Si(001) Substrates. ECS Transactions, 2010, 33, 887-892.	0.5	1
229	Thermal Stability and Electron Irradiation Damage of Ordered Structure in the Thermal Oxide Layer on Si. Journal of the Electrochemical Society, 2010, 157, H977.	2.9	0
230	High-Angular-Resolution Microbeam X-Ray Diffraction with CCD Detector. AIP Conference Proceedings, 2010, , .	0.4	25
231	Structural Property and Electric Field Response of a Single Perovskite PbTiO3Nanowire Using Micro X-ray Beam. Japanese Journal of Applied Physics, 2010, 49, 09MC09.	1.5	4
232	A grazing incidence small-angle x-ray scattering analysis on capped Ge nanodots in layer structures. Journal of Physics Condensed Matter, 2010, 22, 474003.	1.8	7
233	Liquid-crystal periodic zigzags from geometrical and surface-anchoring-induced confinement: Origin and internal structure from mesoscopic scale to molecular level. Physical Review E, 2010, 82, 041705.	2.1	21
234	Catalytically Active Structure of Bi Deposited on a Au(111) Electrode for the Hydrogen Peroxide Reduction Reaction. Langmuir, 2010, 26, 4590-4593.	3 . 5	20

#	Article	IF	Citations
235	Orientation Change of an Infinite-Layer Structure LaNiO ₂ Epitaxial Thin Film by Annealing with CaH ₂ . Crystal Growth and Design, 2010, 10, 2044-2046.	3.0	30
236	Effect of Surface Molecular Aggregation State and Surface Molecular Motion on Wetting Behavior of Water on Poly(fluoroalkyl methacrylate) Thin Films. Macromolecules, 2010, 43, 454-460.	4.8	128
237	Precise Design of Surface Nano-texture and Surface Chemistry of Polymeric Solids. Composite Interfaces, 2009, 16, 519-533.	2.3	4
238	Synchrotron X-ray Diffraction Studies of Thermal Oxidation of Si and SiGe. ECS Transactions, 2009, 19, 479-493.	0.5	0
239	Piezoelectric Properties of {100}-Oriented Epitaxial BiCoO ₃ â€"BiFeO ₃ Films Measured Using Synchrotron X-ray Diffraction. Japanese Journal of Applied Physics, 2009, 48, 09KD06.	1.5	12
240	Femtosecond laser-driven shock synthesis of hexagonal diamond from highly oriented pyrolytic graphite. Journal of Physics: Conference Series, 2009, 165, 012019.	0.4	22
241	Strain-relaxed structure in $(001)/(100)$ -oriented epitaxial Pb(Zr,Ti)O3 films grown on (100) SrTiO3 substrates by metal organic chemical vapor deposition. Journal of Applied Physics, 2009, 105, .	2.5	8
242	Heterogeneously Hybridized Porous Coordination Polymer Crystals: Fabrication of Heterometallic Core–Shell Single Crystals with an Inâ€Plane Rotational Epitaxial Relationship. Angewandte Chemie - International Edition, 2009, 48, 1766-1770.	13.8	287
243	Microstructures in directly bonded Si substrates. Solid-State Electronics, 2009, 53, 837-840.	1.4	7
244	In situ observation of a Au (111) electrode surface using the X-ray reciprocal-lattice space imaging method. Applied Surface Science, 2009, 256, 1144-1147.	6.1	7
245	Orientation controlled deposition of Pb(Zr,Ti)O3 films using a micron-size patterned SrRuO3 buffer layer. Journal of Materials Science, 2009, 44, 5339-5344.	3.7	3
246	One-Dimensional Zigzag Chain of Water Formed on a Stepped Surface. Journal of Physical Chemistry C, 2009, 113, 4538-4542.	3.1	26
247	A block PCP crystal: anisotropic hybridization of porous coordination polymers by face-selective epitaxial growth. Chemical Communications, 2009, , 5097.	4.1	147
248	Fabrication of nanostructured ITO thin films on nanoimprinted glasses by pulsed laser deposition. , 2009, , .		0
249	Effect of reflected waves on the GISAXS analysis of as-grown capped Ge nanodots. Journal of Physics: Conference Series, 2009, 184, 012005.	0.4	0
250	Influence of \hat{l}_{\pm} -methyl group on molecular aggregation structure and surface physicochemical properties of fluoroalkyl side chain polymers. Journal of Physics: Conference Series, 2009, 184, 012007.	0.4	5
251	Molecular aggregation states of poly{2-(perfluorooctyl)ethyl acrylate} polymer brush thin film analyzed by grazing incidence X-ray diffraction. Journal of Physics: Conference Series, 2009, 184, 012009.	0.4	3
252	Development of a high-precision slit for x-ray beamline at SPring-8. Proceedings of SPIE, 2009, , .	0.8	0

#	Article	IF	Citations
253	Gold model anodes for Li-ion batteries: Single crystalline systems studied by in situ X-ray diffraction. Electrochimica Acta, 2008, 53, 6064-6069.	5.2	28
254	Characterization of strained Si wafers by X-ray diffraction techniques. Journal of Materials Science: Materials in Electronics, 2008, 19, 189-193.	2.2	8
255	Surface X-ray scattering of high index plane of platinum containing kink atoms in solid–liquid interface: Pt(310)=3(100)–(110). Electrochimica Acta, 2008, 53, 6070-6075.	5.2	21
256	Atomic structure of a thallium nanodot lattice formed on the Si(111)-7 \tilde{A} –7 surface. Surface Science, 2008, 602, 369-374.	1.9	5
257	Measurement of electromigration-induced stress in aluminum alloy interconnection. Vacuum, 2008, 83, 637-640.	3.5	2
258	Effect of heating on the residual stresses in TiN films investigated using synchrotron radiation. Vacuum, 2008, 83, 585-588.	3.5	10
259	Molecular Aggregation State of Surface-grafted Poly{2-(perfluorooctyl)ethyl acrylate} Thin Film Analyzed by Grazing Incidence X-ray Diffraction. Polymer Journal, 2008, 40, 854-860.	2.7	37
260	Construction of Highly Oriented Crystalline Surface Coordination Polymers Composed of Copper Dithiooxamide Complexes. Journal of the American Chemical Society, 2008, 130, 15778-15779.	13.7	81
261	Kinetics of the Initial Oxidation of the (0001) 6Hâ^SiC 3 × 3 Reconstructed Surface. Journal of Physical Chemistry C, 2008, 112, 16864-16868.	3.1	5
262	Application of Synchrotron X-ray Diffraction Methods to Gate Stacks of Advanced MOS Devices. ECS Transactions, 2008, 13, 75-82.	0.5	0
263	In-situ x-ray diffraction profiling of cracks and metal-metal interfaces at the nanoscale. , 2008, , .		0
264	Early detection of nanoparticle growth from x-ray reciprocal space mapping. Applied Physics Letters, 2008, 92, 034101.	3.3	5
265	Formation of Multi-Layer Structures in Bi[sub 3]Pb[sub 7] Intermetallic Compounds under an Ultra-High Gravitational Field. AIP Conference Proceedings, 2008, , .	0.4	1
266	Fabrication of Electrically Active Si-based Thin Films by Pulsed Laser Deposition of SiO/C Dual Targets. Materials Research Society Symposia Proceedings, 2008, 1148 , 1 .	0.1	0
267	Structure determination of Tl/Ge(111)-(3 $ ilde{A}$ — 1) by surface x-ray diffraction. Journal of Physics Condensed Matter, 2008, 20, 395226.	1.8	2
268	X-ray diffraction study of polycrystalline BiFeO3 thin films under electric field. Applied Physics Letters, 2008, 93, 042907.	3.3	6
269	Transformation from an atomically stepped NiO thin film to a nanotape structure: A kinetic study using x-ray diffraction. Applied Physics Letters, 2008, 93, 241904.	3.3	4
270	Structure of the metallic Si(001) surface at high temperatures: Synchrotron x-ray scattering measurements. Physical Review B, 2008, 78, .	3.2	1

#	Article	IF	Citations
271	In-situ Thermal Stress Measurement in Multi-layered Aluminum Nitride and Copper Films by Synchrotron Radiation. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2008, 74, 363-369.	0.2	0
272	Toward in situ x-ray diffraction imaging at the nanometer scale. , 2008, , .		2
273	STRUCTURAL STUDY ON INTERFACE BETWEEN THICK GALLIUM LAYER AND SIC SUBSTRATE BY X-RAY REFLECTIVITY UNDER TRANSMISSION GEOMETRY. Transactions of the Materials Research Society of Japan, 2008, 33, 557-560.	0.2	O
274	Surface X-ray Diffraction Study of the Metal-Insulator Transition on the Si(553)-Au Surface. E-Journal of Surface Science and Nanotechnology, 2008, 6, 281-285.	0.4	7
275	Structural Evaluation of an Iron Oxalate Complex Layer Grown on an Ultra-smooth Sapphire (0001) Surface by a Wet Method. Transactions of the Materials Research Society of Japan, 2008, 33, 629-631.	0.2	5
276	The surface structure of reconstructed $Pt(211)$ - (2×1) determined using surface x-ray diffraction. Transactions of the Materials Research Society of Japan, 2008, 33, 633-636.	0.2	1
277	Transmission X-ray Diffraction from Bismuth Lines Embedded in Silicon. Transactions of the Materials Research Society of Japan, 2008, 33, 619-622.	0.2	0
278	X-ray Diffraction from Buried Bi atomic wire formed on Si(00l) - near the Bi LIII Absorption Edge. Transactions of the Materials Research Society of Japan, 2008, 33, 623-624.	0.2	0
279	Fabrication and Characterization of Indium Tin Oxide Thin Films on Nanoimprinted Glasses., 2008,,.		0
280	Structural Characterization of Ar+-Irradiated SrTiO3Showing Room-Temperature Blue Luminescence. Japanese Journal of Applied Physics, 2007, 46, L471-L473.	1.5	31
281	Critical thickness control by deposition rate for epitaxial BaTiO3 thin films grown on SrTiO3(001). Journal of Applied Physics, 2007, 102, 114311.	2.5	20
282	Femtosecond Laser Synthesis of Polymorphic Diamond from Highly Oriented Pyrolytic Graphite. Materials Science Forum, 2007, 561-565, 2349-2352.	0.3	2
283	Direct Observation ofB-site Ordering in Multiferroic Bi2NiMnO6Thin Film. Japanese Journal of Applied Physics, 2007, 46, L845-L847.	1.5	17
284	Stress-Assisted Atomic Migration in Thin Copper Films. Key Engineering Materials, 2007, 353-358, 671-674.	0.4	0
285	Two-dimensional Molecular Aggregation Structure and Thermal Molecular Motion of Polyalkylsiloxane Ultrathin Films. Kobunshi Ronbunshu, 2007, 64, 269-279.	0.2	0
286	Study of Chemical Analysis at the Surface of Organic Thin Films by Scanning Force Microscopy with Chemically Modified Cantilever Tip. Journal of the Adhesion Society of Japan, 2007, 43, 58-63.	0.0	0
287	Multilayer Relaxation of Ru(0001)-(2 \tilde{A} — 2)-O Studied by Surface X-ray Diffraction. Journal of Physical Chemistry C, 2007, 111, 977-980.	3.1	7
288	In Situ Surface X-ray Scattering of Stepped Surface of Platinum:  Pt(311). Langmuir, 2007, 23, 10879-10882.	3.5	29

#	Article	IF	Citations
289	Phase Transition of Alkylsilane Monolayers Studied by Temperature-Dependent Grazing Incidence X-ray Diffraction. Langmuir, 2007, 23, 8861-8865.	3.5	9
290	Structural investigation of nitrided c-sapphire substrate by grazing incidence x-ray diffraction and transmission electron microscopy. Applied Physics Letters, 2007, 91, 202116.	3.3	7
291	Structural characterization of MgO/c-Al2O3 interfaces. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1715-1718.	0.8	1
292	Surface Molecular Aggregation Structure of Poly(fluoroalkyl acrylate) Thin Films. Transactions of the Materials Research Society of Japan, 2007, 32, 239-242.	0.2	5
293	Grazing-incidence Small-angle Scattering as a Tool for Thin Film Microstructure and Interface Analysis. Transactions of the Materials Research Society of Japan, 2007, 32, 275-280.	0.2	2
294	Structural Characterization of Surface-grafted Poly (Vinyl Alcohol) on Silicon Wafer. Transactions of the Materials Research Society of Japan, 2007, 32, 259-262.	0.2	1
295	Analysis of Molecular Aggregation States in Pentacene Thin Films Prepared from Soluble Precursor. Chemistry Letters, 2006, 35, 1162-1163.	1.3	12
296	Alteration of internal stresses in SiO2/Cu/TiN thin films by X-ray and synchrotron radiation due to heat treatment. Vacuum, 2006, 80, 836-839.	3.5	8
297	Preparation and Structural Analysis of Micro-patterned Pb(Zr,Ti)O3Film by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2006, 45, 5102-5106.	1.5	1
298	Epitaxial Growth of Cu Nanodot Arrays Using an AAO Template on a Si Substrate. Electrochemical and Solid-State Letters, 2006, 9, J13.	2.2	23
299	Growth of GaNAs/GaAs Multiple Quantum Well by Molecular Beam Epitaxy Using Modulated N Radical Beam Source. Japanese Journal of Applied Physics, 2006, 45, 3540-3543.	1.5	8
300	Development of High-Angular-Resolution Microdiffraction System for Reciprocal Space Map Measurements. Japanese Journal of Applied Physics, 2006, 45, L1054-L1056.	1.5	29
301	Thickness dependence of dielectric properties in bismuth layer-structured dielectrics. Applied Physics Letters, 2006, 89, 082901.	3.3	39
302	Structural Analyses of Fractional Monolayer (GaAs)m/(AlAs)nSuperlattices by X-ray Resonant/Off-Resonant Scattering. Japanese Journal of Applied Physics, 2006, 45, 3548-3551.	1.5	6
303	THERMAL STRESS BEHAVIOR IN NANO-SIZE THIN ALUMINUM FILMS. International Journal of Modern Physics B, 2006, 20, 4691-4696.	2.0	2
304	Molecular Aggregation Structure of Poly(fluoroalkyl acrylate) Thin Films Evaluated by Synchrotron-sourced Grazing-incidence X-ray Diffraction. Chemistry Letters, 2005, 34, 1024-1025.	1.3	34
305	Femtosecond laser driven shock synthesis of the high-pressure phase of iron. Applied Surface Science, 2005, 247, 571-576.	6.1	20
306	Grazing Incidence X-ray Diffraction Study on Surface Crystal Structure of Polyethylene Thin Films. Polymer Bulletin, 2005, 53, 213-222.	3.3	34

#	Article	IF	CITATIONS
307	Study of solid/solid interface by transmitted x-ray reflectivity. Surface and Interface Analysis, 2005, 37, 185-189.	1.8	2
308	In Situ Observation of Thermal Stress in Nano-Size Thin Aluminum Films. Materials Science Forum, 2005, 490-491, 577-582.	0.3	0
309	Residual Stress Measurement in Sputtered Copper Thin Films by Synchrotron Radiation and Ordinary X-Rays. Materials Science Forum, 2005, 490-491, 661-666.	0.3	0
310	Encapsulation of atomic-scale Bi wires in epitaxial silicon without loss of structure. Physical Review B, 2005, 72, .	3.2	22
311	Superconducting properties and crystallinity of as-grown MgB/sub 2/ thin films synthesized using an in-plane-lattice near-matched epitaxial buffer layer. IEEE Transactions on Applied Superconductivity, 2005, 15, 3257-3260.	1.7	2
312	Order-disorder transition in the surface charge-density-wave phase of Cu(001) \hat{a} c(4 \hat{A} -4) \hat{a} In. Physical Review B, 2005, 72, .	3.2	10
313	Observation of Domain Switching in Fatigued Epitaxial Pb(Zr,Ti)O3 Thin Films. Materials Research Society Symposia Proceedings, 2005, 902, 1.	0.1	0
314	Water adsorption on a p $(2\tilde{A}-2)$ -Ni (111) â \in "O surface studied by surface x-ray diffraction and infrared reflection absorption spectroscopy at 25 and 140K. Journal of Chemical Physics, 2005, 122, 224703.	3.0	24
315	Dependence of the Molecular Aggregation State of Octadecylsiloxane Monolayers on Preparation Methods. Langmuir, 2005, 21, 905-910.	3.5	64
316	Dependence of electrical properties of epitaxial Pb(Zr,Ti)O3 thick films on crystal orientation and Zrâ^•(Zr+Ti) ratio. Journal of Applied Physics, 2005, 98, 094106.	2.5	114
317	Metal/Semiconductor Interfaces Studied by Transmitted X-ray Reflectivity. Japanese Journal of Applied Physics, 2004, 43, 1561-1565.	1.5	11
318	High-quality as-grown MgB2 thin-film fabrication at a low temperature using an in-plane-lattice near-matched epitaxial-buffer layer. Journal of Applied Physics, 2004, 96, 3580-3582.	2.5	18
319	RECIPROCAL-LATTICE SPACE IMAGING OF X-RAY INTENSITIES DIFFRACTED FROM NANOWIRES. Materials Research Society Symposia Proceedings, 2004, 840, Q6.4.1.	0.1	4
320	<title>Femtosecond-laser-driven shock quenching of the high-pressure phase of iron</title> ., 2004, 5662, 678.		0
321	Surface And Interface Studies At APS Endstation 5ID-C. AIP Conference Proceedings, 2004, , .	0.4	6
322	Structure analysis of the Ag (001) surface at 25 K by synchrotron x-ray crystal truncation rod scattering. AIP Conference Proceedings, 2004, , .	0.4	0
323	Structural analysis of NiO ultra-thin films epitaxially grown on ultra-smooth sapphire substrates by synchrotron X-ray diffraction measurements. Applied Surface Science, 2004, 221, 450-454.	6.1	20
324	Evaluation of internal stresses in TiN thin films by synchrotron radiation. Vacuum, 2004, 74, 571-575.	3.5	8

#	Article	IF	Citations
325	Residual stress and thermal stress observation in thin copper films. Thin Solid Films, 2004, 459, 245-248.	1.8	54
326	Disordered structure of Pt(111)-p(2 \tilde{A} —2) induced by synchrotron X-ray beam irradiation. Surface Science, 2004, 563, 199-205.	1.9	5
327	Structure analysis of Cu(001)–c(4×4)-In by surface X-ray diffraction. Surface Science, 2004, 565, 144-150.	1.9	4
328	Surface X-ray diffraction in transmission geometry. Applied Surface Science, 2004, 234, 403-408.	6.1	14
329	High-energy x-ray scattering in grazing incidence from nanometer-scale oxide wires. Applied Physics Letters, 2004, 84, 4239-4241.	3.3	23
330	Evaluation of Internal Stresses in Single-, Double- and Multi-Layered TiN and TiAlN Thin Films by Synchrotron Radiation. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2004, 47, 312-317.	0.4	8
331	Formation of Ultra-High-Density Ferromagnetic Column Arrays Beyond 1 Tera/inch2 Using Porous Alumina Template. Transactions of the Magnetics Society of Japan, 2004, 4, 231-234.	0.5	10
332	Two dimensional metal–oxianion surface complexes formation during the upd process on a Au(1 1 1) electrode studied by in situ surface X-ray diffraction and infrared reflection absorption spectroscopy. Journal of Electroanalytical Chemistry, 2003, 554-555, 175-182.	3.8	9
333	X-ray standing wave study of Si/Ge/Si() heterostructures grown with Bi as a surfactant. Surface Science, 2003, 529, 1-10.	1.9	3
334	Paracrystalline Lattice Distortion in the Near-Surface Region of Melt-Crystallized Polyethylene Films Evaluated by Synchrotron-Sourced Grazing-Incidence X-ray Diffraction. Macromolecules, 2003, 36, 5905-5907.	4.8	33
335	Beamline for Surface and Interface Structures at SPring-8. Surface Review and Letters, 2003, 10, 543-547.	1.1	140
336	Three-Dimensional Reconstruction of Atoms in Surface X-Ray Diffraction. Japanese Journal of Applied Physics, 2003, 42, L189-L191.	1.5	15
337	X-ray scattering study of the Ge(001): Te($1\tilde{A}$ – 1) surface structure. Physical Review B, 2000, 61, 16692-16696.	3.2	11
338	X-ray scattering studies of surfactant mediated epitaxial growth of Si/Ge/Si(001) heterostructures. Journal of Applied Physics, 2000, 88, 2391-2394.	2.5	13
339	Structure of a passivated Ge surface prepared from aqueous solution. Surface Science, 2000, 462, L594-L598.	1.9	37
340	In-plane structure of an arsenic-adsorbed Si(001) surface probed with grazing-angle x-ray standing waves. Physical Review B, 1999, 60, 15546-15549.	3.2	5
341	Resonant X-ray magnetic scattering from the twisted states of an Fe/Gd multilayer. Physica B: Condensed Matter, 1998, 248, 133-139.	2.7	8
342	Ultrahigh-Vacuum Facility for High-Resolution Grazing-Angle X-ray Diffraction at a Vertical Wiggler Source of Synchrotron Radiation. Journal of Synchrotron Radiation, 1998, 5, 1222-1226.	2.4	4

#	Article	IF	Citations
343	Interfacial profile of a Bragg Mirror. Applied Surface Science, 1998, 133, 98-102.	6.1	12
344	X-Ray Circular Dichroic Bragg Reflections from a GdCo/Ag Multilayer. Japanese Journal of Applied Physics, 1997, 36, 4525-4530.	1.5	5
345	Interfacial roughness of multilayer structures on Si(111) probed by x-ray scattering. Journal of Physics Condensed Matter, 1997, 9, 4521-4533.	1.8	5
346	Application of Grazing-Angle X-ray Standing Waves to the In-Plane Structure of a 100ÃThick Epilayer Film. Acta Crystallographica Section A: Foundations and Advances, 1997, 53, 781-788.	0.3	30
347	Anomalous dispersion X-ray reflectometry for model-independent determination of Al/C multilayer structures. Physica B: Condensed Matter, 1996, 221, 416-419.	2.7	7
348	Properties of grazing-angle X-ray standing waves and their application to an arsenic-deposited Si(111) 1 \tilde{A} — 1 surface. Acta Crystallographica Section A: Foundations and Advances, 1995, 51, 375-384.	0.3	34
349	Ultrahigh vacuum diffractometer for grazingâ€angle xâ€ray standingâ€wave experiments at a verticalâ€wiggler source. Review of Scientific Instruments, 1995, 66, 1364-1366.	1.3	3
350	Mapping of two-dimensional lattice distortions in silicon crystals at submicrometer resolution from X-ray rocking-curve data. Journal of Applied Crystallography, 1994, 27, 338-344.	4.5	22
351	Mapping of two-dimensional lattice distortions in silicon crystals at submicrometer resolution from X-ray rocking-curve data. Erratum. Journal of Applied Crystallography, 1994, 27, 647-647.	4.5	0
352	Structure of fluoride/GaAs(111) heteroepitaxial interfaces. Surface Science, 1993, 282, 342-356.	1.9	14
353	X-Ray Evaluation of Microroughness of Mechanochemically Polished Silicon Surfaces. Japanese Journal of Applied Physics, 1993, 32, L616-L619.	1.5	9
354	In-plane structure of arsenic deposited on the Si(111) surface studied with the grazing-angle x-ray standing-wave method. Physical Review B, 1993, 48, 11408-11411.	3.2	15
355	Backreflection xâ€ray standing waves and crystal truncation rods as structure probe for epilayer–substrate systems. Review of Scientific Instruments, 1992, 63, 1142-1145.	1.3	56
356	Dynamical xâ€ray diffraction from a perfect crystal under grazing incidence conditions. Review of Scientific Instruments, 1989, 60, 2373-2375.	1.3	29
357	DYNAMICAL X-RAY DIFFRACTION FROM CRYSTALS UNDER GRAZING-INCIDENCE CONDITIONS. Journal De Physique Colloque, 1989, 50, C7-225-C7-229.	0.2	0
358	Dynamical X-Ray Diffraction Profiles for Asymmetric Reflection form Crystals under Grazing Incidence Conditions. Japanese Journal of Applied Physics, 1988, 27, L1976-L1979.	1.5	9
359	Formation of Amorphous Graded Structure in Bi ₃ Pb ₇ Intermetallic Compounds under Strong Gravitational Field. Defect and Diffusion Forum, 0, 289-292, 357-360.	0.4	4
360	Measurement of Micro Residual Stresses Near the Grain Boundary in Copper Bicrystal. Advanced Materials Research, 0, 89-91, 515-520.	0.3	0

#	Article	IF	CITATIONS
361	Effect of Multiple Parallel Grooves on the Photocatalytic Activity of Rutile TiO ₂ Surfaces. Key Engineering Materials, 0, 617, 109-112.	0.4	3