Charles M Knobler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8437922/publications.pdf

Version: 2024-02-01

41 papers

1,435 citations

331670 21 h-index 330143 37 g-index

42 all docs 42 docs citations

times ranked

42

1253 citing authors

#	Article	IF	Citations
1	How and why RNA genomes are (partially) ordered in viral capsids. Current Opinion in Virology, 2022, 52, 203-210.	5.4	2
2	The Nonmonotonic Dose Dependence of Protein Expression in Cells Transfected with Self-Amplifying RNA. Journal of Virology, 2022, , e0185821.	3.4	0
3	The non-monotonic dose dependence of protein expression in cells transfected with self-amplifying RNA. Journal of Virological Methods, 2021, , 114386.	2.1	1
4	Genome organization and interaction with capsid protein in a multipartite RNA virus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10673-10680.	7.1	31
5	RNA Homopolymers Form Higher-Curvature Virus-like Particles Than Do Normal-Composition RNAs. Biophysical Journal, 2019, 117, 1331-1341.	0.5	7
6	Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like particles. PLoS ONE, 2019, 14, e0215031.	2.5	42
7	The effect of macromolecular crowding on single-round transcription by <i>Escherichia coli</i> RNA polymerase. Nucleic Acids Research, 2019, 47, 1440-1450.	14.5	26
8	Two-Stage Dynamics of <i>In Vivo </i> Bacteriophage Genome Ejection. Physical Review X, 2018, 8, .	8.9	7
9	Protocol for Efficient Cell-Free Synthesis of Cowpea Chlorotic Mottle Virus-Like Particles Containing Heterologous RNAs. Methods in Molecular Biology, 2018, 1776, 249-265.	0.9	2
10	Enzymatic Synthesis and Fractionation of Fluorescent PolyU RNAs. Bio-protocol, 2018, 8, e2988.	0.4	0
11	The Effect of RNA Secondary Structure onÂtheÂSelf-Assembly of Viral Capsids. Biophysical Journal, 2017, 113, 339-347.	0.5	30
12	Coaxing a Viral RNA Out Of Its Shell: How Does a Viral RNA Genome Initiate Contact With Its Host?. FASEB Journal, 2016, 30, 599.3.	0.5	0
13	Controlling the extent of viral genome release by a combination of osmotic stress and polyvalent cations. Physical Review E, 2015, 92, 022708.	2.1	4
14	Role of RNA Branchedness in the Competition for Viral Capsid Proteins. Journal of Physical Chemistry B, 2015, 119, 13991-14002.	2.6	24
15	A Simple RNA-DNA Scaffold Templates the Assembly of Monofunctional Virus-Like Particles. Journal of the American Chemical Society, 2015, 137, 7584-7587.	13.7	34
16	Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy. Rna, 2015, 21, 877-886.	3.5	45
17	Bacteriophage P22 ejects all of its internal proteins before its genome. Virology, 2015, 485, 128-134.	2.4	34
18	The Assembly Pathway of an Icosahedral Single-Stranded RNA Virus Depends on the Strength of Inter-Subunit Attractions. Journal of Molecular Biology, 2014, 426, 1050-1060.	4.2	94

#	Article	IF	Citations
19	Role of Electrostatics in the Assembly Pathway of a Single-Stranded RNA Virus. Journal of Virology, 2014, 88, 10472-10479.	3.4	7 9
20	Characterization of Viral Capsid Protein Self-Assembly around Short Single-Stranded RNA. Journal of Physical Chemistry B, 2014, 118, 7510-7519.	2.6	42
21	Viral RNAs Are Unusually Compact. PLoS ONE, 2014, 9, e105875.	2.5	41
22	Self-Assembly of Viral Capsid Protein and RNA Molecules of Different Sizes: Requirement for a Specific High Protein/RNA Mass Ratio. Journal of Virology, 2012, 86, 3318-3326.	3.4	151
23	Physical Chemistry of DNA Viruses. Annual Review of Physical Chemistry, 2009, 60, 367-383.	10.8	78
24	Measuring the Force Ejecting DNA from Phage. Journal of Physical Chemistry B, 2004, 108, 6838-6843.	2.6	76
25	Langmuir Monolayers and Liquid Crystals. Molecular Crystals and Liquid Crystals, 2001, 364, 133-140.	0.3	5
26	Friction Anisotropy and Asymmetry Related to the Molecular Tilt Azimuth in a Monolayer of 1-Monopalmytoyl-rac-glycerol. Langmuir, 2000, 16, 9390-9395.	3.5	13
27	Statistics of shear-induced rearrangements in a two-dimensional model foam. Physical Review E, 1999, 60, 4385-4396.	2.1	95
28	Relating the Organization of the Molecular Tilt Azimuth to Lateral-Force Images in Monolayers Transferred to Solid Substrates. Journal of Physical Chemistry B, 1998, 102, 2614-2617.	2.6	26
29	A compact Brewster-angle microscope for use in Langmuir–Blodgett deposition. Review of Scientific Instruments, 1998, 69, 3699-3700.	1.3	15
30	Phase-Separated Two-Component Self-Assembled Organosilane Monolayers and Their Use in Selective Adsorption of a Protein. Langmuir, 1996, 12, 1368-1374.	3.5	73
31	Optical measurements of the phase diagram of Langmuir monolayers of fatty acid–alcohol mixtures. Journal of Chemical Physics, 1995, 103, 2365-2368.	3.0	48
32	A microstamp of approval. Nature, 1994, 369, 15-16.	27.8	14
33	Frustrationâ€limited clusters in liquids. Journal of Chemical Physics, 1994, 101, 2391-2397.	3.0	137
34	Domain morphology in a twoâ€dimensional anisotropic mesophase: Cusps and boojum textures in a Langmuir monolayer. Journal of Chemical Physics, 1994, 101, 8258-8261.	3.0	53
35	Monolayer phases of the fatty acids and their ethyl esters. Makromolekulare Chemie Macromolecular Symposia, 1991, 46, 55-64.	0.6	3
36	Domain Structures and Phase Transitions in Langmuir Monolayers. Materials Research Society Symposia Proceedings, 1991, 237, 263.	0.1	7

#	Article	IF	CITATIONS
37	Tricritical phenomena in quasibinary mixtures. VIII. Calculations from the van der Waals equation for binary mixtures. Journal of Chemical Physics, 1990, 92, 5442-5453.	3.0	17
38	Tricritical phenomena in quasiâ€binary systems. VII. Light scattering from ternary ethane systems. Journal of Chemical Physics, 1988, 89, 3760-3771.	3.0	7
39	Tricritical phenomena in quasiâ€binary mixtures. VI. The binary system ethane + nâ€eicosane and some revised scaling parameters. Journal of Chemical Physics, 1988, 89, 2281-2285.	3.0	15
40	Tricritical phenomena in quasiâ€binary mixtures. IV. Ternary ethane systems. Journal of Chemical Physics, 1987, 86, 4120-4132.	3.0	38
41	Tricritical phenomena in quasiâ€binary mixtures. V. New measurements on ternary methane systems. Journal of Chemical Physics, 1987, 86, 4133-4137.	3.0	19