## Kit Wayne Chew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8436781/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Microalgae biorefinery: High value products perspectives. Bioresource Technology, 2017, 229, 53-62.                                                                                      | 9.6  | 947       |
| 2  | Microalgae: A potential alternative to health supplementation for humans. Food Science and Human<br>Wellness, 2019, 8, 16-24.                                                            | 4.9  | 538       |
| 3  | Waste to bioenergy: a review on the recent conversion technologies. BMC Energy, 2019, 1, .                                                                                               | 6.3  | 285       |
| 4  | Sustainable approaches for algae utilisation in bioenergy production. Renewable Energy, 2018, 129, 838-852.                                                                              | 8.9  | 241       |
| 5  | A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 2020, 11, 116-129.                                        | 3.2  | 229       |
| 6  | Sustainability of the four generations of biofuels – A review. International Journal of Energy<br>Research, 2020, 44, 9266-9282.                                                         | 4.5  | 225       |
| 7  | Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology, 2020, 304, 122997.                                         | 9.6  | 224       |
| 8  | Technologies for Biogas Upgrading to Biomethane: A Review. Bioengineering, 2019, 6, 92.                                                                                                  | 3.5  | 218       |
| 9  | Recent advances in downstream processing of microalgae lipid recovery for biofuel production.<br>Bioresource Technology, 2020, 304, 122996.                                              | 9.6  | 217       |
| 10 | Recent advances biodegradation and biosorption of organic compounds from wastewater:<br>Microalgae-bacteria consortium - A review. Bioresource Technology, 2022, 344, 126159.            | 9.6  | 185       |
| 11 | Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Research Journal, 2020, 7, 1115-1127.                           | 13.3 | 181       |
| 12 | Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues.<br>Biotechnology for Biofuels, 2021, 14, 87.                                                   | 6.2  | 176       |
| 13 | Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation:<br>A review. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 332-344. | 5.3  | 174       |
| 14 | Nature's fight against plastic pollution: Algae for plastic biodegradation and bioplastics production.<br>Environmental Science and Ecotechnology, 2020, 4, 100065.                      | 13.5 | 174       |
| 15 | Pyrolysis: An effective technique for degradation of COVID-19 medical wastes. Chemosphere, 2021, 275, 130092.                                                                            | 8.2  | 134       |
| 16 | Transformation of Biomass Waste into Sustainable Organic Fertilizers. Sustainability, 2019, 11, 2266.                                                                                    | 3.2  | 129       |
| 17 | Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology Advances, 2020, 43, 107554.                                                                       | 11.7 | 117       |
| 18 | Algae biopolymer towards sustainable circular economy. Bioresource Technology, 2021, 325, 124702.                                                                                        | 9.6  | 112       |

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges. Renewable and Sustainable Energy Reviews, 2022, 154, 111852. | 16.4 | 107       |
| 20 | Enhanced microalgal protein extraction and purification using sustainable microwave-assisted multiphase partitioning technique. Chemical Engineering Journal, 2019, 367, 1-8.                | 12.7 | 105       |
| 21 | Plastic waste associated with the COVID-19 pandemic: Crisis or opportunity?. Journal of Hazardous Materials, 2021, 417, 126108.                                                              | 12.4 | 103       |
| 22 | Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health.<br>Science of the Total Environment, 2021, 788, 147815.                                      | 8.0  | 99        |
| 23 | Nanomaterials Utilization in Biomass for Biofuel and Bioenergy Production. Energies, 2020, 13, 892.                                                                                          | 3.1  | 97        |
| 24 | Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris.<br>Bioresource Technology, 2018, 267, 356-362.                                                   | 9.6  | 89        |
| 25 | Green technology for the industrial production of biofuels and bioproducts from microalgae: a review. Environmental Chemistry Letters, 2020, 18, 1967-1985.                                  | 16.2 | 89        |
| 26 | Analysis of Economic and Environmental Aspects of Microalgae Biorefinery for Biofuels Production:<br>A Review. Biotechnology Journal, 2018, 13, 1700618.                                     | 3.5  | 87        |
| 27 | Microalgae for biofuels, wastewater treatment and environmental monitoring. Environmental<br>Chemistry Letters, 2021, 19, 2891-2904.                                                         | 16.2 | 87        |
| 28 | Microalgal-based biochar in wastewater remediation: Its synthesis, characterization and applications.<br>Environmental Research, 2022, 204, 111966.                                          | 7.5  | 86        |
| 29 | Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnology for Biofuels, 2019, 12, 191.                                   | 6.2  | 83        |
| 30 | Integrated ultrasound-assisted liquid biphasic flotation for efficient extraction of astaxanthin from<br>Haematococcus pluvialis. Ultrasonics Sonochemistry, 2020, 67, 105052.               | 8.2  | 83        |
| 31 | Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnology Advances, 2021, 47, 107684.                                             | 11.7 | 83        |
| 32 | Sustainable utilization of biowaste compost for renewable energy and soil amendments.<br>Environmental Pollution, 2020, 267, 115662.                                                         | 7.5  | 75        |
| 33 | Microalgal-Bacterial Consortia as Future Prospect in Wastewater Bioremediation, Environmental<br>Management and Bioenergy Production. Indian Journal of Microbiology, 2021, 61, 262-269.     | 2.7  | 73        |
| 34 | CO2 mitigation and phycoremediation of industrial flue gas and wastewater via microalgae-bacteria consortium: Possibilities and challenges. Chemical Engineering Journal, 2021, 425, 131436. | 12.7 | 70        |
| 35 | Prospects and environmental sustainability of phyconanotechnology: A review on algae-mediated metal nanoparticles synthesis and mechanism. Environmental Research, 2022, 212, 113140.        | 7.5  | 66        |
| 36 | Extraction of natural astaxanthin from Haematococcus pluvialis using liquid biphasic flotation system. Bioresource Technology, 2019, 290, 121794.                                            | 9.6  | 64        |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture.<br>Environmental Technology and Innovation, 2020, 20, 101168.                                | 6.1  | 64        |
| 38 | Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. Environmental Pollution, 2021, 278, 116836. | 7.5  | 64        |
| 39 | Resource recovery from industrial effluents through the cultivation of microalgae: A review.<br>Bioresource Technology, 2021, 337, 125461.                                           | 9.6  | 64        |
| 40 | Liquid biphasic flotation for the purification of C-phycocyanin from Spirulina platensis microalga.<br>Bioresource Technology, 2019, 288, 121519.                                    | 9.6  | 63        |
| 41 | Cultivation of Oily Microalgae for the Production of Third-Generation Biofuels. Sustainability, 2019, 11, 5424.                                                                      | 3.2  | 61        |
| 42 | Advancement of green technologies: A comprehensive review on the potential application of microalgae biomass. Chemosphere, 2021, 281, 130886.                                        | 8.2  | 61        |
| 43 | Natural hydroxyapatite from fishbone waste for the rapid adsorption of heavy metals of aqueous effluent. Environmental Technology and Innovation, 2020, 20, 101109.                  | 6.1  | 57        |
| 44 | Perspective of Spirulina culture with wastewater into a sustainable circular bioeconomy.<br>Environmental Pollution, 2021, 284, 117492.                                              | 7.5  | 55        |
| 45 | Algae utilization and its role in the development of green cities. Chemosphere, 2021, 268, 129322.                                                                                   | 8.2  | 53        |
| 46 | Permeabilization of Haematococcus pluvialis and solid-liquid extraction of astaxanthin by CO2-based alkyl carbamate ionic liquids. Chemical Engineering Journal, 2021, 411, 128510.  | 12.7 | 53        |
| 47 | Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel<br>Production: A Review. Energies, 2020, 13, 1483.                                          | 3.1  | 52        |
| 48 | Liquid Biphasic System: A Recent Bioseparation Technology. Processes, 2020, 8, 149.                                                                                                  | 2.8  | 52        |
| 49 | Reuniting the Biogeochemistry of Algae for a Low-Carbon Circular Bioeconomy. Trends in Plant<br>Science, 2021, 26, 729-740.                                                          | 8.8  | 52        |
| 50 | Prospects of Industry 5.0 in algae: Customization of production and new advance technology for clean bioenergy generation. Energy Conversion and Management: X, 2021, 10, 100048.    | 1.6  | 51        |
| 51 | How does ionic liquid play a role in sustainability of biomass processing?. Journal of Cleaner<br>Production, 2021, 284, 124772.                                                     | 9.3  | 51        |
| 52 | Recent Developments and Applications of Three-Phase Partitioning for the Recovery of Proteins.<br>Separation and Purification Reviews, 2019, 48, 52-64.                              | 5.5  | 50        |
| 53 | Renewable diesel as fossil fuel substitution in Malaysia: A review. Fuel, 2022, 314, 123137.                                                                                         | 6.4  | 49        |
| 54 | Microalgal Protein Extraction From Chlorella vulgaris FSP-E Using Triphasic Partitioning Technique<br>With Sonication. Frontiers in Bioengineering and Biotechnology, 2019, 7, 396.  | 4.1  | 48        |

| #  | Article                                                                                                                                                                               | IF               | CITATIONS          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 55 | Smart microalgae farming with internet-of-things for sustainable agriculture. Biotechnology<br>Advances, 2022, 57, 107931.                                                            | 11.7             | 47                 |
| 56 | Comparative study of ozonation and ozonation catalyzed by Fe-loaded biochar as catalyst to remove methylene blue from aqueous solution. Chemosphere, 2022, 307, 135738.               | 8.2              | 47                 |
| 57 | Microalgae cultivation in wastewater and potential processing strategies using solvent and membrane separation technologies. Journal of Water Process Engineering, 2021, 39, 101701.  | 5.6              | 45                 |
| 58 | How does the Internet of Things (IoT) help in microalgae biorefinery?. Biotechnology Advances, 2022, 54, 107819.                                                                      | 11.7             | 45                 |
| 59 | A review on the diverse interactions between microalgae and nanomaterials: Growth variation, photosynthetic performance and toxicity. Bioresource Technology, 2022, 351, 127048.      | 9.6              | 42                 |
| 60 | The conundrum of waste cooking oil: Transforming hazard into energy. Journal of Hazardous<br>Materials, 2021, 417, 126129.                                                            | 12.4             | 40                 |
| 61 | Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics.<br>Chemosphere, 2022, 291, 132932.                                                         | 8.2              | 39                 |
| 62 | Spirulina platensis based biorefinery for the production of value-added products for food and pharmaceutical applications. Bioresource Technology, 2019, 289, 121727.                 | 9.6              | 38                 |
| 63 | Chlorella vulgaris FSP-E cultivation in waste molasses: Photo-to-property estimation by artificial intelligence. Chemical Engineering Journal, 2020, 402, 126230.                     | 12.7             | 37                 |
| 64 | The Effects of Biofertilizers on Growth, Soil Fertility, and Nutrients Uptake of Oil Palm (Elaeis) Tj ETQq0 0 0 rgBT                                                                  | /Overlock<br>2.8 | 10 Tf 50 382<br>37 |
| 65 | Permeabilization of Chlorella sorokiniana and extraction of lutein by distillable CO2-based alkyl carbamate ionic liquids. Separation and Purification Technology, 2021, 256, 117471. | 7.9              | 36                 |
| 66 | A comprehensive review on the techniques for coconut oil extraction and its application. Bioprocess and Biosystems Engineering, 2021, 44, 1807-1818.                                  | 3.4              | 33                 |
| 67 | Emerging algal nanotechnology for high-value compounds: A direction to future food production.<br>Trends in Food Science and Technology, 2021, 116, 290-302.                          | 15.1             | 33                 |
| 68 | Algae as potential feedstock for various bioenergy production. Chemosphere, 2022, 287, 131944.                                                                                        | 8.2              | 33                 |
| 69 | Recent advances in the conversion of waste cooking oil into value-added products: A review. Fuel, 2022, 324, 124539.                                                                  | 6.4              | 33                 |
| 70 | A review on bioconversion processes for hydrogen production from agro-industrial residues.<br>International Journal of Hydrogen Energy, 2022, 47, 37302-37320.                        | 7.1              | 32                 |
| 71 | Densification of food waste compost: Effects of moisture content and dairy powder waste additives on pellet quality. Chemical Engineering Research and Design, 2018, 116, 780-786.    | 5.6              | 31                 |
| 72 | Sustainable membrane technology for resource recovery from wastewater: Forward osmosis and pressure retarded osmosis. Journal of Water Process Engineering, 2021, 39, 101758.         | 5.6              | 31                 |

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Can algae contribute to the war with Covid-19?. Bioengineered, 2021, 12, 1226-1237.                                                                                                               | 3.2  | 31        |
| 74 | Sustainable smart photobioreactor for continuous cultivation of microalgae embedded with Internet of Things. Bioresource Technology, 2022, 346, 126558.                                           | 9.6  | 31        |
| 75 | Microalgae: The Future Supply House of Biohydrogen and Biogas. Frontiers in Energy Research, 2021, 9,                                                                                             | 2.3  | 30        |
| 76 | Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location. Energy, 2020, 190, 116474.                        | 8.8  | 29        |
| 77 | Impact of magnetic immobilization on the cell physiology of green unicellular algae <i>Chlorella<br/>vulgaris</i> . Bioengineered, 2020, 11, 141-153.                                             | 3.2  | 29        |
| 78 | Valorization of spent brewery yeast biosorbent with sonication-assisted adsorption for dye removal in wastewater treatment. Environmental Research, 2022, 204, 112385.                            | 7.5  | 29        |
| 79 | Isolation of protein from Chlorella sorokiniana CY1 using liquid biphasic flotation assisted with sonication through sugaring-out effect. Journal of Oceanology and Limnology, 2019, 37, 898-908. | 1.3  | 28        |
| 80 | Characterization of whey protein isolate and pectin composite film catalyzed by small laccase from Streptomyces coelicolor. Environmental Technology and Innovation, 2020, 19, 100999.            | 6.1  | 28        |
| 81 | Bioprocessing of Chaetoceros calcitrans for the recovery of fucoxanthin using CO2-based alkyl carbamate ionic liquids. Bioresource Technology, 2021, 322, 124520.                                 | 9.6  | 28        |
| 82 | Disposal methods, health effects and emission regulations for sulfur hexafluoride and its by-products. Journal of Hazardous Materials, 2021, 417, 126107.                                         | 12.4 | 27        |
| 83 | Sonoprocessing-assisted solvent extraction for the recovery of pigment-protein complex from Spirulina platensis. Chemical Engineering Journal, 2020, 398, 125613.                                 | 12.7 | 26        |
| 84 | Recent advances of biosurfactant for waste and pollution bioremediation: Substitutions of petroleum-based surfactants. Environmental Research, 2022, 212, 113126.                                 | 7.5  | 26        |
| 85 | Liquid triphasic systems as sustainable downstream processing of Chlorella sp. biorefinery for potential biofuels and feed production. Bioresource Technology, 2021, 333, 125075.                 | 9.6  | 24        |
| 86 | Sonication and grinding pre-treatments on Gelidium amansii seaweed for the extraction and characterization of Agarose. Frontiers of Environmental Science and Engineering, 2018, 12, 1.           | 6.0  | 23        |
| 87 | Optimization of protein extraction from <i>Chlorella Vulgaris</i> via novel sugaringâ€out assisted<br>liquid biphasic electric flotation system. Engineering in Life Sciences, 2019, 19, 968-977. | 3.6  | 23        |
| 88 | Immobilized Chlorella species mixotrophic cultivation at various textile wastewater concentrations.<br>Journal of Water Process Engineering, 2020, 38, 101609.                                    | 5.6  | 23        |
| 89 | Outlook on biorefinery potential of palm oil mill effluent for resource recovery. Journal of Environmental Chemical Engineering, 2020, 8, 104519.                                                 | 6.7  | 23        |
| 90 | Economic potential of bioremediation using immobilized microalgae-based microbial fuel cells. Clean<br>Technologies and Environmental Policy, 2021, 23, 2251-2264.                                | 4.1  | 23        |

| #   | Article                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Recovery of Protein from Dairy Milk Waste Product Using Alcohol-Salt Liquid Biphasic Flotation.<br>Processes, 2019, 7, 875.                                                                          | 2.8  | 22        |
| 92  | Computational Lock and Key and Dynamic Trajectory Analysis of Natural Biophors Against COVID-19<br>Spike Protein to Identify Effective Lead Molecules. Molecular Biotechnology, 2021, 63, 898-908.   | 2.4  | 21        |
| 93  | Biorefinery of Chlorella sorokiniana using ultra sonication assisted liquid triphasic flotation system. Bioresource Technology, 2020, 303, 122931.                                                   | 9.6  | 20        |
| 94  | Utilization of agricultural lignocellulosic wastes for biofuels and green diesel production.<br>Chemosphere, 2022, 290, 133246.                                                                      | 8.2  | 20        |
| 95  | Hybrid liquid biphasic system for cell disruption and simultaneous lipid extraction from microalgae<br>Chlorella sorokiniana CY-1 for biofuel production. Biotechnology for Biofuels, 2019, 12, 252. | 6.2  | 19        |
| 96  | An overview on the development of conventional and alternative extractive methods for the purification of agarose from seaweed. Separation Science and Technology, 2018, 53, 467-480.                | 2.5  | 18        |
| 97  | Preparation and characterization of curdlan/nanocellulose blended film and its application to chilled meat preservation. Chemosphere, 2021, 266, 128948.                                             | 8.2  | 18        |
| 98  | Bioethanol from hydrolysate of ultrasonic processed robust microalgal biomass cultivated in dairy wastewater under optimal strategy. Energy, 2022, 244, 122604.                                      | 8.8  | 18        |
| 99  | Thermal-Fenton mechanism with sonoprocessing for rapid non-catalytic transesterification of microalgal to biofuel production. Chemical Engineering Journal, 2021, 408, 127264.                       | 12.7 | 17        |
| 100 | Biogas production from beverage factory wastewater in a mobile bioenergy station. Chemosphere, 2021, 264, 128564.                                                                                    | 8.2  | 17        |
| 101 | Optimization and kinetic study of non-catalytic transesterification of palm oil under subcritical condition using microwave technology. Energy Conversion and Management, 2019, 196, 1126-1137.      | 9.2  | 16        |
| 102 | Effective removal of excessive fluoride from aqueous environment using activated pods of Bauhinia<br>variegata: Batch and dynamic analysis. Environmental Pollution, 2021, 272, 115969.              | 7.5  | 16        |
| 103 | An efficient and rapid method to extract and purify protein – Liquid Triphasic Flotation system.<br>Bioresource Technology, 2019, 294, 122158.                                                       | 9.6  | 15        |
| 104 | Extraction of agar from Eucheuma cottonii and Gelidium amansii seaweeds with sonication pretreatment using autoclaving method. Journal of Oceanology and Limnology, 2019, 37, 871-880.               | 1.3  | 15        |
| 105 | Extraction of phenolic compounds from fresh and wilt kesum plant using liquid biphasic flotation.<br>Separation and Purification Technology, 2020, 242, 116831.                                      | 7.9  | 15        |
| 106 | Characterization of a recombinant laccase from Fusarium oxysporum HUIB02 for biochemical application on dyes removal. Biochemical Engineering Journal, 2021, 168, 107958.                            | 3.6  | 15        |
| 107 | Novel strategy in biohydrogen energy production from COVID - 19 plastic waste: A critical review.<br>International Journal of Hydrogen Energy, 2022, 47, 42051-42074.                                | 7.1  | 15        |
| 108 | Recovery of microalgae biodiesel using liquid biphasic flotation system. Fuel, 2022, 317, 123368.                                                                                                    | 6.4  | 15        |

| #   | Article                                                                                                                                                                                                                                             | IF                  | CITATIONS    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| 109 | Optimization of production parameters of fish protein hydrolysate from Sarda Orientalis black<br>muscle (by-product) using protease enzyme. Clean Technologies and Environmental Policy, 2021, 23,<br>31-40.                                        | 4.1                 | 14           |
| 110 | Cultivation of Chlorella vulgaris on dairy waste using vision imaging for biomass growth monitoring. Bioresource Technology, 2021, 341, 125892.                                                                                                     | 9.6                 | 14           |
| 111 | Optimization of culture conditions for gamma-aminobutyric acid production by newly identified<br><i>Pediococcus pentosaceus</i> MN12 isolated from â€mam nem', a fermented fish sauce. Bioengineered,<br>2021, 12, 54-62.                           | 3.2                 | 14           |
| 112 | Microwave-assisted pyrolysis for carbon catalyst, nanomaterials and biofuel production. Fuel, 2022, 313, 123023.                                                                                                                                    | 6.4                 | 14           |
| 113 | Current advances in recovery and biorefinery of fucoxanthin from Phaeodactylum tricornutum.<br>Algal Research, 2022, 65, 102735.                                                                                                                    | 4.6                 | 13           |
| 114 | Extraction of fucoxanthin from Chaetoceros calcitrans by electropermeabilization-assisted liquid biphasic flotation system. Journal of Chromatography A, 2022, 1668, 462915.                                                                        | 3.7                 | 12           |
| 115 | Hydrothermally extraction of saponin from Acanthophyllum glandulosum root – Physico-chemical characteristics and antibacterial activity evaluation. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0.784314 rg                                       | gB <b>T.4</b> Overl | oda 10 Tf 50 |
| 116 | Green bioprocessing of protein from Chlorella vulgaris microalgae towards circular bioeconomy.<br>Bioresource Technology, 2021, 333, 125197.                                                                                                        | 9.6                 | 11           |
| 117 | Advanced green bioprocess of soil carbohydrate extraction from long-term conversion of forest soil to paddy field. Journal of Environmental Chemical Engineering, 2021, 9, 106021.                                                                  | 6.7                 | 11           |
| 118 | Prospects of Palm Fruit Extraction Technology: Palm Oil Recovery Processes and Quality Enhancement. Food Reviews International, 2022, 38, 893-920.                                                                                                  | 8.4                 | 10           |
| 119 | Factors Affecting the Performance of Membrane Osmotic Processes for Bioenergy Development.<br>Energies, 2020, 13, 481.                                                                                                                              | 3.1                 | 9            |
| 120 | Optimization of isoflavones extraction from soybeans using full factorial design. Journal of Food<br>Processing and Preservation, 2019, 43, e14078.                                                                                                 | 2.0                 | 8            |
| 121 | Isolation of indole-3-acetic acid-producing Azospirillum brasilense from Vietnamese wet rice:<br>Co-immobilization of isolate and microalgae as a sustainable biorefinery. Journal of Biotechnology,<br>2022, 349, 12-20.                           | 3.8                 | 8            |
| 122 | Biofuels from Microbial Lipids. Green Energy and Technology, 2018, , 359-388.                                                                                                                                                                       | 0.6                 | 7            |
| 123 | Application of a Liquid Biphasic Flotation (LBF) System for Protein Extraction from Persiscaria Tenulla<br>Leaf. Processes, 2020, 8, 247.                                                                                                           | 2.8                 | 7            |
| 124 | Soil mineralization as effects of plant growth promoting bacteria isolated from microalgae in<br>wastewater and rice straw application in a long-term paddy rice in Central Viet Nam. Environmental<br>Technology and Innovation, 2021, 24, 101982. | 6.1                 | 7            |
| 125 | Discovery of α-Glucosidase Inhibitors from Marine Microorganisms: Optimization of Culture Conditions and Medium Composition. Molecular Biotechnology, 2021, 63, 1004-1015.                                                                          | 2.4                 | 6            |
| 126 | Characterization of bacteria type strain Bacillus . spp isolated from extracellular polymeric substance harvested in seafood wastewater. Journal of Chemical Technology and Biotechnology, 0, , .                                                   | 3.2                 | 6            |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Self-healing epoxy coating synthesis by embedment of metal 2-methyl imidazole and acetylacetonate complexes with microcapsules. Chemosphere, 2021, 285, 131492.                                                  | 8.2  | 6         |
| 128 | Environmental analysis of Chlorella vulgaris cultivation in large scale closed system under waste nutrient source. Chemical Engineering Journal, 2022, 433, 134254.                                              | 12.7 | 6         |
| 129 | Modelling drying kinetic of oyster mushroom dehydration – The optimization of drying conditions<br>for dehydratation of Pleurotus species. Materials Science for Energy Technologies, 2020, 3, 840-845.          | 1.8  | 5         |
| 130 | Enhanced production of non-edible Xanthium spinosum-based biodiesel using waste biomass under dynamic conditions. Biomass Conversion and Biorefinery, 0, , 1.                                                    | 4.6  | 5         |
| 131 | Recent Development of Renewable Diesel Production Using Bimetallic Catalysts. Frontiers in Energy<br>Research, 2021, 9, .                                                                                        | 2.3  | 5         |
| 132 | Utilization of Aerobic Compression Composting Technology on Raw Mushroom Waste for Bioenergy<br>Pellets Production. Processes, 2022, 10, 463.                                                                    | 2.8  | 5         |
| 133 | Cell Separation and Disruption, Product Recovery, and Purification. Learning Materials in Biosciences, 2019, , 237-271.                                                                                          | 0.4  | 4         |
| 134 | Green biorefinery: Microalgae-bacteria microbiome on tolerance investigations in plants. Journal of<br>Biotechnology, 2022, 343, 120-127.                                                                        | 3.8  | 4         |
| 135 | Adapting microalgaeâ€based strategies for sustainable green cities. Biotechnology Journal, 2022, 17, e2100586.                                                                                                   | 3.5  | 4         |
| 136 | Sustainable management of algal blooms in ponds and rivers. , 2022, , 431-444.                                                                                                                                   |      | 4         |
| 137 | Developments in Fermentative Butanol Production as an Alternative Biofuel Source. Journal of Energy<br>Resources Technology, Transactions of the ASME, 2018, 140, .                                              | 2.3  | 3         |
| 138 | Potential Cultivation of Lactobacillus pentosus from Human Breastmilk with Rapid Monitoring through the Spectrophotometer Method. Processes, 2020, 8, 902.                                                       | 2.8  | 3         |
| 139 | Advanced Food Process Technologies: Bridging Conventional Practices to Industry 4.0. Current Nutrition and Food Science, 2020, 16, 1286-1286.                                                                    | 0.6  | 3         |
| 140 | Automated Cultivation System for Microalgae: Growth Factors and Control. Current Nutrition and Food Science, 2022, 18, 776-779.                                                                                  | 0.6  | 3         |
| 141 | Phycocyanin: A Natural Antioxidant to Combat Free Radicals. Current Nutrition and Food Science, 2022, 18, 338-344.                                                                                               | 0.6  | 2         |
| 142 | Indigenous Materials as Catalyst Supports for Renewable Diesel Production in Malaysia. Energies, 2022, 15, 2835.                                                                                                 | 3.1  | 2         |
| 143 | Environmental management of two of the world's most endangered marine and terrestrial predators:<br>Vaquita and cheetah. Environmental Research, 2020, 190, 109966.                                              | 7.5  | 1         |
| 144 | Improved physical properties and in vitro biocompatibility of chitosan composite scaffolds<br>incorporated with a green filler on bone cells. Clean Technologies and Environmental Policy, 2020,<br>22, 701-712. | 4.1  | 1         |

| 145Biotechnology and sustainable environmental health management. Chemosphere, 2022, 291, 132798.8.21146Optimization analysis of hydrogen separation from an H2/CO2 gas mixture via a palladium membrane<br>with a vacuum using response surface methodology. International Journal of Hydrogen Energy, 2022,<br>47, 42266-42279.7.11 | IF CITATIONS                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Optimization analysis of hydrogen separation from an H2/CO2 gas mixture via a palladium membrane<br>with a vacuum using response surface methodology. International Journal of Hydrogen Energy, 2022, 7.1 1<br>47, 42266-42279.                                                                                                       | emosphere, 2022, 291, 132798. 8.2 1                                  |
|                                                                                                                                                                                                                                                                                                                                       | ture via a palladium membrane<br>nal of Hydrogen Energy, 2022, 7.1 1 |
| 147 Special issue on algae bioprocess engineering. Bioengineered, 2020, 11, 188-188. 3.2 0                                                                                                                                                                                                                                            | ., 188-188. 3.2 0                                                    |
| 148Safety control of waste cooking oil: transforming hazard into multifarious products with available<br>pre-treatment processes. , 2022, 2, 1-11.0                                                                                                                                                                                   | ous products with available 0                                        |
| 149 Special Issue on "New Processes: Working towards a Sustainable Society― Processes, 2022, 10, 869. 2.8 0                                                                                                                                                                                                                           | ociety― Processes, 2022, 10, 869. 2.8 0                              |