Nicole M Van Dam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8436709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tree species richness differentially affects the chemical composition of leaves, roots and root exudates in four subtropical tree species. Journal of Ecology, 2022, 110, 97-116.	4.0	20
2	Woolly beech aphid infestation reduces soil organic carbon availability and alters phyllosphere and rhizosphere bacterial microbiomes. Plant and Soil, 2022, 473, 639-657.	3.7	3
3	A highâ€quality functional genome assembly of <i>Delia radicum</i> L. (Diptera: Anthomyiidae) annotated from egg to adult. Molecular Ecology Resources, 2022, 22, 1954-1971.	4.8	6
4	Niche partitioning in nitrogen uptake among subtropical tree species enhances biomass production. Science of the Total Environment, 2022, 823, 153716.	8.0	9
5	A mosaic of induced and nonâ€induced branches promotes variation in leaf traits, predation and insect herbivore assemblages in canopy trees. Ecology Letters, 2022, 25, 729-739.	6.4	14
6	Mechanisms of Isothiocyanate Detoxification in Larvae of Two Belowground Herbivores, Delia radicum and D. floralis (Diptera: Anthomyiidae). Frontiers in Physiology, 2022, 13, 874527.	2.8	3
7	Flying insect biomass is negatively associated with urban cover in surrounding landscapes. Diversity and Distributions, 2022, 28, 1242-1254.	4.1	5
8	Arbuscular mycorrhizal fungi prevent the negative effect of drought and modulate the growthâ€defence tradeâ€off in tomato plants. , 2022, 1, 177-190.		11
9	Branch-Localized Induction Promotes Efficacy of Volatile Defences and Herbivore Predation in Trees. Journal of Chemical Ecology, 2021, 47, 99-111.	1.8	12
10	Distinct Arabidopsis Responses to Two Generalist Caterpillar Species Differing in Host Breadth. PhytoFrontiers, 2021, 1, 21-39.	1.6	1
11	Soil chemical legacies trigger speciesâ€specific and contextâ€dependent root responses in later arriving plants. Plant, Cell and Environment, 2021, 44, 1215-1230.	5.7	20
12	LC-MS based plant metabolic profiles of thirteen grassland species grown in diverse neighbourhoods. Scientific Data, 2021, 8, 52.	5.3	10
13	Induced Local and Systemic Defense Responses in Tomato Underlying Interactions Between the Root-Knot Nematode Meloidogyne incognita and the Potato Aphid Macrosiphum euphorbiae. Frontiers in Plant Science, 2021, 12, 632212.	3.6	10
14	Storage of carbon reserves in spruce trees is prioritized over growth in the face of carbon limitation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	45
15	Leaf herbivory counteracts nematode-triggered repression of jasmonate-related defenses in tomato roots. Plant Physiology, 2021, 187, 1762-1778.	4.8	9
16	Unravelling Plant Responses to Stress—The Importance of Targeted and Untargeted Metabolomics. Metabolites, 2021, 11, 558.	2.9	21
17	The bacterium <i>Pseudomonas protegens</i> antagonizes the microalga <scp><i>Chlamydomonas reinhardtii</i></scp> using a blend of toxins. Environmental Microbiology, 2021, 23, 5525-5540.	3.8	17
18	The significance of tree-tree interactions for forest ecosystem functioning. Basic and Applied Ecology, 2021, 55, 33-52.	2.7	38

#	Article	IF	CITATIONS
19	Root infection by the nematode <i>Meloidogyne incognita</i> modulates leaf antiherbivore defenses and plant resistance to <i>Spodoptera exigua</i> . Journal of Experimental Botany, 2021, 72, 7909-7926.	4.8	6
20	A practical guide to implementing metabolomics in plant ecology and biodiversity research. Advances in Botanical Research, 2021, , 163-203.	1.1	17
21	Cascading Effects of Root Microbial Symbiosis on the Development and Metabolome of the Insect Herbivore Manduca sexta L Metabolites, 2021, 11, 731.	2.9	13
22	The impact of Spodoptera exigua herbivory on Meloidogyne incognita-induced root responses depends on the nematodes' life cycle stages. AoB PLANTS, 2020, 12, plaa029.	2.3	13
23	High Concentrations of Very Long Chain Leaf Wax Alkanes of Thrips Susceptible Pepper Accessions (Capsicum spp). Journal of Chemical Ecology, 2020, 46, 1082-1089.	1.8	9
24	Effective Biodiversity Monitoring Needs a Culture of Integration. One Earth, 2020, 3, 462-474.	6.8	62
25	Functional Variation in Dipteran Gut Bacterial Communities in Relation to Their Diet, Life Cycle Stage and Habitat. Insects, 2020, 11, 543.	2.2	14
26	Infection Patterns and Fitness Effects of Rickettsia and Sodalis Symbionts in the Green Lacewing Chrysoperla carnea. Insects, 2020, 11, 867.	2.2	2
27	Localized defense induction in trees: a mosaic of leaf traits promoting variation in plant traits, predation, and communities of canopy arthropods?. American Journal of Botany, 2020, 107, 545-548.	1.7	7
28	Slug Feeding Triggers Dynamic Metabolomic and Transcriptomic Responses Leading to Induced Resistance in Solanum dulcamara. Frontiers in Plant Science, 2020, 11, 803.	3.6	3
29	Fertilizer Rate-Associated Increase in Foliar Jasmonate Burst Observed in Wounded Arabidopsis thaliana Leaves is Attenuated at eCO2. Frontiers in Plant Science, 2020, 10, 1636.	3.6	5
30	Gastropods and Insects Prefer Different Solanum dulcamara Chemotypes. Journal of Chemical Ecology, 2019, 45, 146-161.	1.8	13
31	Resistance to three thrips species in <i>Capsicum</i> spp. depends on site conditions and geographic regions. Journal of Applied Entomology, 2019, 143, 929-941.	1.8	8
32	A multitrophic perspective on biodiversity–ecosystem functioning research. Advances in Ecological Research, 2019, 61, 1-54.	2.7	95
33	Triâ€ŧrophic interactions: bridging species, communities and ecosystems. Ecology Letters, 2019, 22, 2151-2167.	6.4	77
34	Correlated Induction of Phytohormones and Glucosinolates Shapes Insect Herbivore Resistance of Cardamine Species Along Elevational Gradients. Journal of Chemical Ecology, 2019, 45, 638-648.	1.8	5
35	Metabolomics of Thrips Resistance in Pepper (Capsicum spp.) Reveals Monomer and Dimer Acyclic Diterpene Glycosides as Potential Chemical Defenses. Journal of Chemical Ecology, 2019, 45, 490-501.	1.8	35
36	Thrips Resistance Screening Is Coming of Age: Leaf Position and Ontogeny Are Important Determinants of Leaf-Based Resistance in Pepper. Frontiers in Plant Science, 2019, 10, 510.	3.6	27

#	Article	IF	CITATIONS
37	Interactions between functionally diverse fungal mutualists inconsistently affect plant performance and competition. Oikos, 2019, 128, 1136-1146.	2.7	10
38	Plant species richness elicits changes in the metabolome of grassland species via soil biotic legacy. Journal of Ecology, 2019, 107, 2240-2254.	4.0	33
39	Ultraviolet radiation enhances salicylic acid-mediated defense signaling and resistance to <i>Pseudomonas syringae</i> DC3000 in a jasmonic acid-deficient tomato mutant. Plant Signaling and Behavior, 2019, 14, e1581560.	2.4	15
40	Same Difference? Low and High Glucosinolate Brassica rapa Varieties Show Similar Responses Upon Feeding by Two Specialist Root Herbivores. Frontiers in Plant Science, 2019, 10, 1451.	3.6	12
41	Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. Journal of Experimental Botany, 2019, 70, 315-327.	4.8	41
42	Delayed Chemical Defense: Timely Expulsion of Herbivores Can Reduce Competition with Neighboring Plants. American Naturalist, 2019, 193, 125-139.	2.1	22
43	Eyes on the future – evidence for tradeâ€offs between growth, storage and defense in Norway spruce. New Phytologist, 2019, 222, 144-158.	7.3	88
44	Both Biosynthesis and Transport Are Involved in Glucosinolate Accumulation During Root-Herbivory in Brassica rapa. Frontiers in Plant Science, 2019, 10, 1653.	3.6	18
45	Glycoalkaloid composition explains variation in slug resistance in Solanum dulcamara. Oecologia, 2018, 187, 495-506.	2.0	22
46	Herbivoreâ€induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytologist, 2018, 220, 726-738.	7.3	50
47	Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoâ€evolutionary implications. New Phytologist, 2018, 220, 739-749.	7.3	101
48	Combining QTL mapping with transcriptome and metabolome profiling reveals a possible role for ABA signaling in resistance against the cabbage whitefly in cabbage. PLoS ONE, 2018, 13, e0206103.	2.5	13
49	Interactive Responses of Solanum Dulcamara to Drought and Insect Feeding are Herbivore Species-Specific. International Journal of Molecular Sciences, 2018, 19, 3845.	4.1	17
50	Growing Research Networks on Mycorrhizae for Mutual Benefits. Trends in Plant Science, 2018, 23, 975-984.	8.8	51
51	New Perspectives on CO ₂ , Temperature, and Light Effects on BVOC Emissions Using Online Measurements by PTR-MS and Cavity Ring-Down Spectroscopy. Environmental Science & Technology, 2018, 52, 13811-13823.	10.0	31
52	Locally and systemically induced glucosinolates follow optimal defence allocation theory upon root herbivory. Functional Ecology, 2018, 32, 2127-2137.	3.6	26
53	Functional variation in a key defense gene structures herbivore communities and alters plant performance. PLoS ONE, 2018, 13, e0197221.	2.5	4
54	Current Challenges in Plant Eco-Metabolomics. International Journal of Molecular Sciences, 2018, 19, 1385.	4.1	106

#	Article	IF	CITATIONS
55	Differences in Hormonal Signaling Triggered by Two Root-Feeding Nematode Species Result in Contrasting Effects on Aphid Population Growth. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	21
56	Defence signalling marker gene responses to hormonal elicitation differ between roots and shoots. AoB PLANTS, 2018, 10, ply031.	2.3	16
57	An objective highâ€ŧhroughput screening method for thrips damage quantitation using llastik and ImageJ. Entomologia Experimentalis Et Applicata, 2018, 166, 508-515.	1.4	21
58	Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica) Tj ETQqO O O rgBT /(Overlock 1 1.1	0 Tf 50 622 T 28
59	Light Intensity-Mediated Induction of Trichome-Associated Allelochemicals Increases Resistance Against Thrips in Tomato. Plant and Cell Physiology, 2018, 59, 2462-2475.	3.1	27
60	Metabolomics of plant resistance to insects. , 2018, , 129-149.		7
61	Quantification of Thrips Damage Using Ilastik and ImageJ Fiji. Bio-protocol, 2018, 8, e2806.	0.4	10
62	Mechanisms and ecological implications of plantâ€mediated interactions between belowground and aboveground insect herbivores. Ecological Research, 2017, 32, 13-26.	1.5	37
63	Evolutionary responses to climate change in a range expanding plant. Oecologia, 2017, 184, 543-554.	2.0	18
64	Root and shoot glucosinolate allocation patterns follow optimal defence allocation theory. Journal of Ecology, 2017, 105, 1256-1266.	4.0	35
65	Root chemical traits and their roles in belowground biotic interactions. Pedobiologia, 2017, 65, 58-67.	1.2	65
66	Induced plant defences in biological control of arthropod pests: a doubleâ€edged sword. Pest Management Science, 2017, 73, 1780-1788.	3.4	52
67	A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chromatography (HPLC). Journal of Visualized Experiments, 2017, , .	0.3	52
68	Root-Lesion Nematodes Suppress Cabbage Aphid Population Development by Reducing Aphid Daily Reproduction. Frontiers in Plant Science, 2016, 7, 111.	3.6	12
69	Plasmids from the gut microbiome of cabbage root fly larvae encode <scp>SaxA</scp> that catalyses the conversion of the plant toxin 2â€phenylethyl isothiocyanate. Environmental Microbiology, 2016, 18, 1379-1390.	3.8	83
70	The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. Journal of Ecology, 2016, 104, 1116-1125.	4.0	72
71	Drought and flooding have distinct effects on herbivoreâ€induced responses and resistance in <i>Solanum dulcamara</i> . Plant, Cell and Environment, 2016, 39, 1485-1499.	5.7	59
72	Negative impact of drought stress on a generalist leaf chewer and a phloem feeder is associated with, but not explained by an increase in herbivore-induced indole glucosinolates. Environmental and Experimental Botany, 2016, 123, 88-97.	4.2	31

#	Article	IF	CITATIONS
73	How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Molecular Biology, 2016, 91, 727-740.	3.9	299
74	Something in the air? The impact of volatiles on mollusc attack of oilseed rape seedlings. Annals of Botany, 2016, 117, 1073-1082.	2.9	15
75	Recognizing Plant Defense Priming. Trends in Plant Science, 2016, 21, 818-822.	8.8	549
76	Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere. Signaling and Communication in Plants, 2016, , 175-210.	0.7	30
77	Extrafloral nectar secretion from wounds of Solanum dulcamara. Nature Plants, 2016, 2, 16056.	9.3	22
78	Effect of atmospheric carbon dioxide levels and nitrate fertilization on glucosinolate biosynthesis in mechanically damaged Arabidopsis plants. BMC Plant Biology, 2016, 16, 68.	3.6	16
79	Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. Trends in Plant Science, 2016, 21, 256-265.	8.8	470
80	How does plant chemical diversity contribute to biodiversity at higher trophic levels?. Current Opinion in Insect Science, 2016, 14, 46-55.	4.4	28
81	Allelopathic effects of glucosinolate breakdown products in Hanza [Boscia senegalensis (Pers.) Lam.] processing waste water. Frontiers in Plant Science, 2015, 6, 532.	3.6	10
82	Isolation and identification of 4-α-rhamnosyloxy benzyl glucosinolate in Noccaea caerulescens showing intraspecific variation. Phytochemistry, 2015, 110, 166-171.	2.9	36
83	Aboveground and Belowground Herbivores Synergistically Induce Volatile Organic Sulfur Compound Emissions from Shoots but Not from Roots. Journal of Chemical Ecology, 2015, 41, 631-640.	1.8	42
84	Plant defence responses in oilseed rape MINELESS plants after attack by the cabbage moth Mamestra brassicae. Journal of Experimental Botany, 2015, 66, 579-592.	4.8	16
85	Characterizing Volatiles and Attractiveness of Five Brassicaceous Plants with Potential for a â€ ⁻ Push-Pull' Strategy Toward the Cabbage Root Fly, Delia radicum. Journal of Chemical Ecology, 2015, 41, 330-339.	1.8	32
86	Alien interference: disruption of infochemical networks by invasive insect herbivores. Plant, Cell and Environment, 2014, 37, 1854-1865.	5.7	55
87	Consequences of combined herbivore feeding and pathogen infection for fitness of Barbarea vulgaris plants. Oecologia, 2014, 175, 589-600.	2.0	30
88	Folivory Affects Composition of Nectar, Floral Odor and Modifies Pollinator Behavior. Journal of Chemical Ecology, 2014, 40, 39-49.	1.8	61
89	DELLA proteins modulate <i>Arabidopsis</i> defences induced in response to caterpillar herbivory. Journal of Experimental Botany, 2014, 65, 571-583.	4.8	42
90	Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners. Ecology and Evolution, 2014, 4, 2777-2786.	1.9	82

#	Article	IF	CITATIONS
91	Plant Chemical Ecology Finally Gets to its Root(s). Journal of Chemical Ecology, 2014, 40, 220-221.	1.8	4
92	Mechanical wounding under field conditions: A potential tool to increase the allelopathic inhibitory effect of cover crops on weeds?. European Journal of Agronomy, 2014, 52, 229-236.	4.1	15
93	Efficiency of plant induced volatiles in attracting <i>Encarsia formosa</i> and <i>Serangium japonicum</i> , two dominant natural enemies of whitefly <i>Bemisia tabaci</i> in China. Pest Management Science, 2014, 70, 1604-1610.	3.4	21
94	Loss of heterosis and familyâ€dependent inbreeding depression in plant performance and resistance against multiple herbivores under drought stress. Journal of Ecology, 2014, 102, 1497-1505.	4.0	19
95	Dealing with double trouble: consequences of single and double herbivory in Brassica juncea. Chemoecology, 2013, 23, 71-82.	1.1	25
96	Birds exploit herbivoreâ€induced plant volatiles to locate herbivorous prey. Ecology Letters, 2013, 16, 1348-1355.	6.4	114
97	Root and shoot jasmonic acid induced plants differently affect the performance of Bemisia tabaci and its parasitoid Encarsia formosa. Basic and Applied Ecology, 2013, 14, 670-679.	2.7	8
98	Heterodera schachtii Nematodes Interfere with Aphid-Plant Relations on Brassica oleracea. Journal of Chemical Ecology, 2013, 39, 1193-1203.	1.8	24
99	A novel indirect defence in Brassicaceae: Structure and function of extrafloral nectaries in <i>Brassica juncea</i> . Plant, Cell and Environment, 2013, 36, 528-541.	5.7	25
100	A tritrophic approach to the preference–performance hypothesis involving an exotic and a native plant. Biological Invasions, 2013, 15, 2387-2401.	2.4	25
101	The importance of aboveground–belowground interactions on the evolution and maintenance of variation in plant defense traits. Frontiers in Plant Science, 2013, 4, 431.	3.6	29
102	Plant systemic induced responses mediate interactions between root parasitic nematodes and aboveground herbivorous insects. Frontiers in Plant Science, 2013, 4, 87.	3.6	73
103	Belowground induction by Delia radicum or phytohormones affect aboveground herbivore communities on field-grown broccoli. Frontiers in Plant Science, 2013, 4, 305.	3.6	19
104	An ecogenomic analysis of herbivoreâ€induced plant volatiles in <i><scp>B</scp>rassica juncea</i> . Molecular Ecology, 2013, 22, 6179-6196.	3.9	25
105	Plants Know Where It Hurts: Root and Shoot Jasmonic Acid Induction Elicit Differential Responses in Brassica oleracea. PLoS ONE, 2013, 8, e65502.	2.5	63
106	Real-time analysis of sulfur-containing volatiles in Brassica plants infested with root-feeding Delia radicum larvae using proton-transfer reaction mass spectrometry. AoB PLANTS, 2012, 2012, pls021.	2.3	37
107	How genetic modification of roots affects rhizosphere processes and plant performance. Journal of Experimental Botany, 2012, 63, 3475-3483.	4.8	21
108	Virus infection decreases the attractiveness of white clover plants for a non-vectoring herbivore. Oecologia, 2012, 170, 433-444.	2.0	45

#	Article	IF	CITATIONS
109	On-line detection of root-induced volatiles in Brassica nigra plants infested with Delia radicum L. root fly larvae. Phytochemistry, 2012, 84, 68-77.	2.9	55
110	Phytochemicals as mediators of aboveground–belowground interactions in plants. , 2012, , 190-203.		3
111	Tracing Hidden Herbivores: Time-Resolved Non-Invasive Analysis of Belowground Volatiles by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). Journal of Chemical Ecology, 2012, 38, 785-794.	1.8	50
112	Root and shoot jasmonic acid induction differently affects the foraging behavior of Cotesia glomerata under semi-field conditions. BioControl, 2012, 57, 387-395.	2.0	6
113	Broccoli and turnip plants display contrasting responses to belowground induction by Delia radicum infestation and phytohormone applications. Phytochemistry, 2012, 73, 42-50.	2.9	37
114	Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Frontiers in Plant Science, 2011, 2, 47.	3.6	155
115	Multitrophic interactions below and above ground: <i>en route</i> to the next level. Journal of Ecology, 2011, 99, 77-88.	4.0	191
116	Temporal dynamics of herbivore-induced responses in Brassica juncea and their effect on generalist and specialist herbivores. Entomologia Experimentalis Et Applicata, 2011, 139, 215-225.	1.4	42
117	Effects of soil organisms on aboveground multitrophic interactions are consistent between plant genotypes mediating the interaction. Entomologia Experimentalis Et Applicata, 2011, 139, 197-206.	1.4	24
118	Differences in Volatile Profiles of Turnip Plants Subjected to Single and Dual Herbivory Above- and Belowground. Journal of Chemical Ecology, 2011, 37, 368-77.	1.8	72
119	Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea). Oecologia, 2011, 166, 421-431.	2.0	55
120	Aboveground herbivory affects indirect defences of brassicaceous plants against the root feeder Delia radicum Linnaeus: laboratory and field evidence. Ecological Entomology, 2011, 36, 326-334.	2.2	25
121	Identification of Biologically Relevant Compounds in Aboveground and Belowground Induced Volatile Blends. Journal of Chemical Ecology, 2010, 36, 1006-1016.	1.8	55
122	Effects of intraspecific variation in white cabbage (Brassica oleracea var. capitata) on soil organisms. Plant and Soil, 2010, 336, 509-518.	3.7	22
123	Activated carbon addition affects substrate pH and germination of six plant species. Soil Biology and Biochemistry, 2010, 42, 1165-1167.	8.8	17
124	Combined effects of patch size and plant nutritional quality on local densities of insect herbivores. Basic and Applied Ecology, 2010, 11, 396-405.	2.7	30
125	Glucosinolate profiling of Brassica rapa cultivars after infection by Leptosphaeria maculans and Fusarium oxysporum. Biochemical Systematics and Ecology, 2010, 38, 612-620.	1.3	29
126	Reduction of rare soil microbes modifies plant–herbivore interactions. Ecology Letters, 2010, 13, 292-301.	6.4	176

#	Article	IF	CITATIONS
127	Herbivoreâ€induced plant responses in <i>Brassica oleracea</i> prevail over effects of constitutive resistance and result in enhanced herbivore attack. Ecological Entomology, 2010, 35, 240-247.	2.2	91
128	Intra-specific Differences in Root and Shoot Glucosinolate Profiles among White Cabbage (Brassica) Tj ETQq0 0 C) rgBT /Ον€	erlock 10 Tf : 40
129	Metabolomics: the chemistry between ecology and genetics. Molecular Ecology Resources, 2010, 10, 583-593.	4.8	136
130	Crossfit analysis: a novel method to characterize the dynamics of induced plant responses. BMC Bioinformatics, 2009, 10, 425.	2.6	14
131	Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochemistry Reviews, 2009, 8, 171-186.	6.5	180
132	Genotype–environment interactions affect flower and fruit herbivory and plant chemistry of <i>Arabidopsis thaliana</i> in a transplant experiment. Ecological Research, 2009, 24, 1161-1171.	1.5	10
133	Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 2009, 5, 150-161.	3.0	135
134	Nonlinear effects of plant root and shoot jasmonic acid application on the performance of <i>Pieris brassicae</i> and its parasitoid <i>Cotesia glomerata</i> . Functional Ecology, 2009, 23, 496-505.	3.6	29
135	Field parasitism rates of caterpillars on <i>Brassica oleracea </i> plants are reliably predicted by differential attraction of <i>Cotesia</i> parasitoids. Functional Ecology, 2009, 23, 951-962.	3.6	87
136	Are population differences in plant quality reflected in the preference and performance of two endoparasitoid wasps?. Oikos, 2009, 118, 733-742.	2.7	68
137	How plants cope with biotic interactions. Plant Biology, 2009, 11, 1-5.	3.8	71
138	Role of Glucosinolates in Insect-Plant Relationships and Multitrophic Interactions. Annual Review of Entomology, 2009, 54, 57-83.	11.8	771
139	Chemical diversity in <i>Brassica oleracea</i> affects biodiversity of insect herbivores. Ecology, 2009, 90, 1863-1877.	3.2	120
140	Belowground Herbivory and Plant Defenses. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 373-391.	8.3	183
141	Barbarea vulgaris Glucosinolate Phenotypes Differentially Affect Performance and Preference of Two Different Species of Lepidopteran Herbivores. Journal of Chemical Ecology, 2008, 34, 121-131.	1.8	65
142	Performance of Generalist and Specialist Herbivores and their Endoparasitoids Differs on Cultivated and Wild Brassica Populations. Journal of Chemical Ecology, 2008, 34, 132-143.	1.8	169
143	Intraspecific Variation in Plant Defense Alters Effects of Root Herbivores on Leaf Chemistry and Aboveground Herbivore Damage. Journal of Chemical Ecology, 2008, 34, 1360-1367.	1.8	58

144Glucosinolates and other metabolites in the leaves of Arabidopsis thaliana from natural populations
and their effects on a generalist and a specialist herbivore. Chemoecology, 2008, 18, 65-71.1.182

#	Article	IF	CITATIONS
145	Why plant volatile analysis needs bioinformatics – detecting signal from noise in increasingly complex profiles. Plant Biology, 2008, 10, 29-37.	3.8	56
146	Performance of specialist and generalist herbivores feeding on cabbage cultivars is not explained by glucosinolate profiles. Entomologia Experimentalis Et Applicata, 2008, 127, 218-228.	1.4	103
147	Reciprocal interactions between the cabbage root fly (<i>DeliaÂradicum</i>) and two glucosinolate phenotypes of <i>BarbareaÂvulgaris</i> . Entomologia Experimentalis Et Applicata, 2008, 128, 312-322.	1.4	33
148	GENETIC VARIATION IN DEFENSE CHEMISTRY IN WILD CABBAGES AFFECTS HERBIVORES AND THEIR ENDOPARASITOIDS. Ecology, 2008, 89, 1616-1626.	3.2	193
149	Root and shoot jasmonic acid applications differentially affect leaf chemistry and herbivore growth. Plant Signaling and Behavior, 2008, 3, 91-98.	2.4	80
150	The Impact of the Absence of Aliphatic Glucosinolates on Insect Herbivory in Arabidopsis. PLoS ONE, 2008, 3, e2068.	2.5	223
151	Effects of dietary nicotine on the development of an insect herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels. Ecological Entomology, 2007, 32, 15-23.	2.2	68
152	Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signals. Oikos, 2007, 116, 367-376.	2.7	157
153	Temporal changes affect plant chemistry and tritrophic interactions. Basic and Applied Ecology, 2007, 8, 421-433.	2.7	52
154	Jasmonic Acid-Induced Changes in Brassica oleracea Affect Oviposition Preference of Two Specialist Herbivores. Journal of Chemical Ecology, 2007, 33, 655-668.	1.8	74
155	Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea. Chemoecology, 2006, 16, 17-24.	1.1	88
156	A heritable glucosinolate polymorphism within natural populations of Barbarea vulgaris. Phytochemistry, 2006, 67, 1214-1223.	2.9	60
157	Soil community composition drives aboveground plant-herbivore-parasitoid interactions. Ecology Letters, 2005, 8, 652-661.	6.4	198
158	Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra. Entomologia Experimentalis Et Applicata, 2005, 115, 161-170.	1.4	129
159	Linking aboveground and belowground interactions via induced plant defenses. Trends in Ecology and Evolution, 2005, 20, 617-624.	8.7	504
160	Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytologist, 2004, 161, 801-810.	7.3	180
161	How does global change affect the strength of trophic interactions?. Basic and Applied Ecology, 2004, 5, 505-514.	2.7	30
162	Above- and Below-Ground Terpenoid Aldehyde Induction in Cotton, Gossypium herbaceum, Following Root and Leaf Injury. Journal of Chemical Ecology, 2004, 30, 53-67.	1.8	121

#	Article	IF	CITATIONS
163	Heritability of a Quantitative and Qualitative Protease Inhibitor Polymorphism in Nicotiana attenuata. Plant Biology, 2003, 5, 179-185.	3.8	8
164	Interactions between above- and belowground insect herbivores as mediated by the plant defense system. Oikos, 2003, 101, 555-562.	2.7	199
165	Interactions over four trophic levels: foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid. Journal of Animal Ecology, 2003, 72, 520-531.	2.8	181
166	COSTS OF GLANDULAR TRICHOMES IN DATURA WRIGHTII: A THREE-YEAR STUDY. Evolution; International Journal of Organic Evolution, 2003, 57, 793-805.	2.3	50
167	Interactions between aboveground and belowground induced responses against phytophages. Basic and Applied Ecology, 2003, 4, 63-77.	2.7	147
168	COSTS OF GLANDULAR TRICHOMES IN DATURA WRIGHTII: A THREE-YEAR STUDY. Evolution; International Journal of Organic Evolution, 2003, 57, 793.	2.3	7
169	ECOLOGICAL COSTS AND BENEFITS CORRELATED WITH TRYPSIN PROTEASE INHIBITOR PRODUCTION IN NICOTIANA ATTENUATA. Ecology, 2003, 84, 79-90.	3.2	125
170	Anti-sense expression of putrescine N-methyltransferase confirms defensive role of nicotine in Nicotiana sylvestris against Manduca sexta. Chemoecology, 2001, 11, 121-126.	1.1	59
171	Competition mediates costs of jasmonate-induced defences, nitrogen acquisition and transgenerational plasticity in Nicotiana attenuata. Functional Ecology, 2001, 15, 406-415.	3.6	107
172	Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata. Journal of Chemical Ecology, 2001, 27, 547-568.	1.8	236
173	Instar-specific sensitivity of specialist Manduca sexta larvae to induced defences in their host plant Nicotiana attenuata. Ecological Entomology, 2001, 26, 578-586.	2.2	50
174	Inheritance and distribution of trichome phenotypes in Datura wrightii. , 1999, 90, 220-227.		53
175	COST OF GLANDULAR TRICHOMES, A "RESISTANCE―CHARACTER IN <i>DATURA WRIGHTII</i> REGEL (SOLANACEAE). Evolution; International Journal of Organic Evolution, 1999, 53, 22-35.	2.3	70
176	Cost of Glandular Trichomes, A "Resistance" Character in Datura wrightii Regel (Solanaceae). Evolution; International Journal of Organic Evolution, 1999, 53, 22.	2.3	60
177	Biological Activity of Datura wrightii Glandular Trichome Exudate Against Manduca Sexta Larvae. Journal of Chemical Ecology, 1998, 24, 1529-1549.	1.8	55
178	Costs of jasmonate-induced responses in plants competing for limited resources. Ecology Letters, 1998, 1, 30-33.	6.4	110
179	Differences in distribution and performance of two sap-sucking herbivores on glandular and non-glandular Datura wrightii. Ecological Entomology, 1998, 23, 22-32.	2.2	78
180	Optimal Level of Chemical Defense Decreasing with Leaf Age. Theoretical Population Biology, 1996, 50, 124-148.	1.1	53

#	Article	IF	CITATIONS
181	The "Raison D'être―of pyrrolizidine alkaloids inCynoglossum officinale: Deterrent effects against generalist herbivores. Journal of Chemical Ecology, 1995, 21, 507-523.	1.8	151
182	Distribution, biosynthesis and turnover of pyrrolizidine alkaloids in. Phytochemistry, 1995, 39, 287-292.	2.9	58
183	Extreme differences in pyrrolizidine alkaloid levels between leaves of Cynoglossum officinale. Phytochemistry, 1994, 37, 1013-1016.	2.9	61
184	Determination of the sesquiterpene dialdehyde polygodial by high-pressure liquid chromatography. Phytochemical Analysis, 1994, 5, 19-23.	2.4	9
185	Genetic variation in constitutive and inducible pyrrolizidine alkaloid levels inCynoglossum officinale L. Oecologia, 1994, 99, 374-378.	2.0	78
186	Induced responses in three alkaloid-containing plant species. Oecologia, 1993, 95, 425-430.	2.0	40
187	Biotic interactions, community assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. Research Ideas and Outcomes, 0, 5, .	1.0	23
188	Ecology and Evolution of Intraspecific Chemodiversity of Plants. Research Ideas and Outcomes, 0, 6, .	1.0	15
189	How Do Plants Defend Themselves From Root-Eating Creatures?. Frontiers for Young Minds, 0, 10, .	0.8	0