Karen Bieback

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8435994/publications.pdf

Version: 2024-02-01

110	10,225	38	99
papers	citations	h-index	g-index
118	118	118	13814
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Noninferior Red Cell Concentrate Quality after Repeated Air Rescue Mission Transport for Prehospital Transfusion. Transfusion Medicine and Hemotherapy, 2022, 49, 172-179.	1.6	3
2	Potential Therapeutic Effects of Long-Term Stem Cell Administration: Impact on the Gene Profile and Kidney Function of PKD/Mhm (Cy/+) Rats. Journal of Clinical Medicine, 2022, 11, 2601.	2.4	2
3	Expression of ADP receptor P2Y ₁₂ , thromboxane A ₂ receptor and C-type lectin-like receptor 2 in cord blood-derived megakaryopoiesis. Platelets, 2021, 32, 618-625.	2.3	2
4	Hemolysis Pathways during Storage of Erythrocytes and Inter-Donor Variability in Erythrocyte Morphology. Transfusion Medicine and Hemotherapy, 2021, 48, 39-47.	1.6	7
5	Inter-Laboratory Comparison of Extracellular Vesicle Isolation Based on Ultracentrifugation. Transfusion Medicine and Hemotherapy, 2021, 48, 48-59.	1.6	30
6	Alpha 1-adrenoceptor signalling contributes to toxic effects of catecholamine on electrical properties in cardiomyocytes. Europace, 2021, 23, 1137-1148.	1.7	11
7	Human Adipose Tissue-Derived Mesenchymal Stromal Cells Inhibit CD4+ T Cell Proliferation and Induce Regulatory T Cells as Well as CD127 Expression on CD4+CD25+ T Cells. Cells, 2021, 10, 58.	4.1	21
8	Editorial: Current Progress in Mesenchymal Stem/Stromal Cell Research. Frontiers in Cell and Developmental Biology, 2021, 9, 658903.	3.7	2
9	Wound Fluid from Breast Cancer Patients Undergoing Intraoperative Radiotherapy Exhibits an Altered Cytokine Profile and Impairs Mesenchymal Stromal Cell Function. Cancers, 2021, 13, 2140.	3.7	8
10	Dopamine D1/D5 Receptor Signaling Is Involved in Arrhythmogenesis in the Setting of Takotsubo Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2021, 8, 777463.	2.4	4
11	miR-10a-5p and miR-29b-3p as Extracellular Vesicle-Associated Prostate Cancer Detection Markers. Cancers, 2020, 12, 43.	3.7	46
12	Plateletâ€rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1908-1917.	2.7	5
13	Modulating endothelial adhesion and migration impacts stem cell therapies efficacy. EBioMedicine, 2020, 60, 102987.	6.1	10
14	Soft Hydrogels for Balancing Cell Proliferation and Differentiation. ACS Biomaterials Science and Engineering, 2020, 6, 4687-4701.	5.2	37
15	Compression Bioreactor-Based Mechanical Loading Induces Mobilization of Human Bone Marrow-Derived Mesenchymal Stromal Cells into Collagen Scaffolds In Vitro. International Journal of Molecular Sciences, 2020, 21, 8249.	4.1	2
16	Human Adipose Tissue-Derived Stromal Cells Suppress Human, but Not Murine Lymphocyte Proliferation, via Indoleamine 2,3-Dioxygenase Activity. Cells, 2020, 9, 2419.	4.1	30
17	Adipose-derived mesenchymal stromal cells reverse high glucose–induced reduction of angiogenesis in human retinal microvascular endothelial cells. Cytotherapy, 2020, 22, 261-275.	0.7	28
18	Pro-angiogenic Activity Discriminates Human Adipose-Derived Stromal Cells From Retinal Pericytes: Considerations for Cell-Based Therapy of Diabetic Retinopathy. Frontiers in Cell and Developmental Biology, 2020, 8, 387.	3.7	11

#	Article	IF	CITATIONS
19	Effects of ASC Application on Endplate Regeneration Upon Glycerol-Induced Muscle Damage. Frontiers in Molecular Neuroscience, 2020, 13, 107.	2.9	4
20	Lipid ratios as a marker for red blood cell storage quality and as a possible explanation for donor gender differences in storage quality. Vox Sanguinis, 2020, 115, 655-663.	1.5	5
21	Junctional Adhesion Molecule-C Mediates the Recruitment of Embryonic-Endothelial Progenitor Cells to the Perivascular Niche during Tumor Angiogenesis. International Journal of Molecular Sciences, 2020, 21, 1209.	4.1	8
22	Bioreactor for mobilization of mesenchymal stem/stromal cells into scaffolds under mechanical stimulation: Preliminary results. PLoS ONE, 2020, 15, e0227553.	2. 5	10
23	Intraoperative radiotherapy for breast cancer treatment efficiently targets the tumor bed preventing breast adipose stromal cell outgrowth. Strahlentherapie Und Onkologie, 2020, 196, 398-404.	2.0	9
24	Monitoring matrix remodeling in the cellular microenvironment using microrheology for complex cellular systems. Acta Biomaterialia, 2020, 111, 254-266.	8.3	18
25	Recent advances in understanding mesenchymal stromal cells. F1000Research, 2020, 9, 156.	1.6	22
26	Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society for Cell & Dene Therapy. Transfusion, 2019, 59, 3448-3460.	1.6	57
27	Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society for Cell & Dene Therapy. Cytotherapy, 2019, 21, 911-924.	0.7	42
28	Intravitreal injection of mesenchymal stem cells evokes retinal vascular damage in rats. FASEB Journal, 2019, 33, 14668-14679.	0.5	27
29	Intravascular Mesenchymal Stromal/Stem Cell Therapy Product Diversification: Time for New Clinical Guidelines. Trends in Molecular Medicine, 2019, 25, 149-163.	6.7	288
30	Production and quality testing of multipotent mesenchymal stromal cell therapeutics for clinical use. Transfusion, 2019, 59, 2164-2173.	1.6	20
31	Quantitation of progenitor cell populations and growth factors after bone marrow aspirate concentration. Journal of Translational Medicine, 2019, 17, 115.	4.4	54
32	The Impact of Harvesting Systems and Donor Characteristics on Viability of Nucleated Cells in Adipose Tissue. Journal of Craniofacial Surgery, 2019, 30, 716-720.	0.7	3
33	Potential of electrospun cationic BSA fibers to guide osteogenic MSC differentiation via surface charge and fibrous topography. Scientific Reports, 2019, 9, 20003.	3.3	21
34	Biomimetic 3D in vitro model of biofilm triggered osteomyelitis for investigating hematopoiesis during bone marrow infections. Acta Biomaterialia, 2018, 73, 250-262.	8.3	12
35	Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology, 2018, 223, 729-743.	1.9	56
36	Estradiol protection against toxic effects of catecholamine on electrical properties in human-induced pluripotent stem cell derived cardiomyocytes. International Journal of Cardiology, 2018, 254, 195-202.	1.7	55

#	Article	IF	CITATIONS
37	Ion Channel Dysfunctions in Dilated Cardiomyopathy in Limb-Girdle Muscular Dystrophy. Circulation Genomic and Precision Medicine, 2018, 11, e001893.	3.6	40
38	A Subpopulation of Stromal Cells Controls Cancer Cell Homing to the Bone Marrow. Cancer Research, 2018, 78, 129-142.	0.9	32
39	The Blood Bag Plasticizer Di-2-Ethylhexylphthalate Causes Red Blood Cells to Form Stomatocytes, Possibly by Inducing Lipid Flip-Flop. Transfusion Medicine and Hemotherapy, 2018, 45, 413-422.	1.6	17
40	Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Frontiers in Medicine, 2018, 5, 179.	2.6	45
41	Human mesenchymal stromal cells inhibit platelet activation and aggregation involving CD73-converted adenosine. Stem Cell Research and Therapy, 2018, 9, 184.	5. 5	28
42	Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nature Medicine, 2018, 24, 1192-1203.	30.7	359
43	Fetal bovine serum (FBS): Past – present – future. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 99-118.	1.5	231
44	Pooled thrombin-activated platelet-rich plasma: a substitute for fetal bovine serum in the engineering of osteogenic/vasculogenic grafts. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1542-1552.	2.7	11
45	Flow morphometry to assess the red blood cell storage lesion. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 874-882.	1.5	9
46	The effect of adipose tissue-derived stem cells in a middle cerebral artery occlusion stroke model depends on their engraftment rate. Stem Cell Research and Therapy, 2017, 8, 96.	5 . 5	18
47	Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5647-5652.	7.1	370
48	Folate receptor mediated genetic modification of human mesenchymal stem cells via folic acid-polyethylenimine-grafted poly(N-3-hydroxypropyl)aspartamide. Clinical Hemorheology and Microcirculation, 2017, 67, 279-295.	1.7	2
49	3D models of the hematopoietic stem cell niche under steady-state and active conditions. Scientific Reports, 2017, 7, 4625.	3.3	66
50	Characterization of mesenchymal stem or stromal cells: tissue sources, heterogeneity, and function. Transfusion, 2016, 56, 2S-5S.	1.6	4
51	Isolation, Culture, and Characterization of Human Umbilical Cord Blood-Derived Mesenchymal Stromal Cells. Methods in Molecular Biology, 2016, 1416, 245-258.	0.9	30
52	Biased signalling is an essential feature of TLR4 in glioma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 3084-3095.	4.1	25
53	ELMO1 protects renal structure and ultrafiltration in kidney development and under diabetic conditions. Scientific Reports, 2016, 6, 37172.	3.3	34
54	Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy?. Advances in Experimental Medicine and Biology, 2016, 951, 77-98.	1.6	141

#	Article	IF	CITATIONS
55	Polycomb Protein BMI1 Regulates Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells Downstream of GSK3. Stem Cells and Development, 2016, 25, 922-933.	2.1	6
56	Indoleamine 2,3-dioxygenase mediates inhibition of virus-specific CD8+ T cell proliferation by human mesenchymal stromal cells. Cytotherapy, 2016, 18, 621-629.	0.7	24
57	Evaluation of GMP-compliant culture media for inÂvitro expansion of humanÂbone marrow mesenchymal stromal cells. Experimental Hematology, 2016, 44, 508-518.	0.4	28
58	Megakaryocytes and platelets express nicotinic acetylcholine receptors but nicotine does not affect megakaryopoiesis or platelet function. Platelets, 2016, 27, 43-50.	2.3	8
59	Expression of Inflammation-related Intercellular Adhesion Molecules in Cardiomyocytes In Vitro and Modulation by Pro-inflammatory Agents. In Vivo, 2016, 30, 213-7.	1.3	1
60	A robust potency assay highlights significant donor variation of human mesenchymal stem/progenitor cell immune modulatory capacity and extended radio-resistance. Stem Cell Research and Therapy, 2015, 6, 236.	5.5	97
61	Comparing the Immunomodulatory Properties of Bone Marrow, Adipose Tissue, and Birth-Associated Tissue Mesenchymal Stromal Cells. Frontiers in Immunology, 2015, 6, 560.	4.8	221
62	Extracellular Vesicles Secreted by Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stromal Cells Fail to Suppress Lymphocyte Proliferation. Stem Cells and Development, 2015, 24, 1374-1376.	2.1	60
63	TGF- \hat{l}^2 1, but Not Bone Morphogenetic Proteins, Activates Smad1/5 Pathway in Primary Human Macrophages and Induces Expression of Proatherogenic Genes. Journal of Immunology, 2015, 194, 709-718.	0.8	36
64	Standardization of Good Manufacturing Practice–compliant production of bone marrow–derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy, 2015, 17, 128-139.	0.7	118
65	Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro. PLoS ONE, 2015, 10, e0138477.	2.5	88
66	Mechanisms of paracrine cardioprotection by cord blood mesenchymal stromal cells. European Journal of Cardio-thoracic Surgery, 2014, 45, 983-992.	1.4	18
67	A Single-Tube Real-Time PCR Assay for Mycoplasma Detection as a Routine Quality Control of Cell Therapeutics. Transfusion Medicine and Hemotherapy, 2014, 41, 83-89.	1.6	19
68	Cord Blood Mesenchymal Stromal Cell-Conditioned Medium Protects Endothelial Cells via STAT3 Signaling. Cellular Physiology and Biochemistry, 2014, 34, 646-657.	1.6	12
69	Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells. International Journal of Molecular Medicine, 2014, 33, 160-170.	4.0	52
70	Recruitment of human cord blood-derived endothelial colony-forming cells to sites of tumor angiogenesis. Cytotherapy, 2013, 15, 726-739.	0.7	31
71	Cultivation in Human Serum Reduces Adipose Tissue-Derived Mesenchymal Stromal Cell Adhesion to Laminin and Endothelium and Reduces Capillary Entrapment. Stem Cells and Development, 2013, 22, 791-803.	2.1	29
72	Platelet Lysate as Replacement for Fetal Bovine Serum in Mesenchymal Stromal Cell Cultures. Transfusion Medicine and Hemotherapy, 2013, 40, 326-335.	1.6	173

#	Article	IF	Citations
73	Human Umbilical Cord Blood Mononuclear Cells in a Double-Hit Model of Bronchopulmonary Dysplasia in Neonatal Mice. PLoS ONE, 2013, 8, e74740.	2.5	37
74	The influence of polymer scaffolds on cellular behaviour of bone marrow derived human mesenchymal stem cells. Clinical Hemorheology and Microcirculation, 2012, 52, 357-373.	1.7	21
75	Replicative aging and differentiation potential of human adipose tissue-derived mesenchymal stromal cells expanded in pooled human or fetal bovine serum. Cytotherapy, 2012, 14, 570-583.	0.7	82
76	Mesenchymal stromal cells (MSCs): science and f(r)iction. Journal of Molecular Medicine, 2012, 90, 773-782.	3.9	51
77	Cell Origin of Human Mesenchymal Stem Cells Determines a Different Healing Performance in Cardiac Regeneration. PLoS ONE, 2011, 6, e15652.	2.5	121
78	Monitoring human mesenchymal stromal cell differentiation by electrochemical impedance sensing. Cytotherapy, 2011, 13, 1074-1089.	0.7	33
79	Translating Research into Clinical Scale Manufacturing of Mesenchymal Stromal Cells. Stem Cells International, 2010, 2010, 1-11.	2.5	48
80	Altered Gene Expression in Human Adipose Stem Cells Cultured with Fetal Bovine Serum Compared to Human Supplements. Tissue Engineering - Part A, 2010, 16, 3467-3484.	3.1	68
81	Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy. World Journal of Stem Cells, 2010, 2, 81.	2.8	100
82	Paracrine effects of uterine leucocytes on gene expression of human uterine stromal fibroblasts. Molecular Human Reproduction, 2009, 15, 39-48.	2.8	41
83	<i>In vitro</i> analysis of integrin expression in stem cells from bone marrow and cord blood during chondrogenic differentiation. Journal of Cellular and Molecular Medicine, 2009, 13, 1175-1184.	3.6	15
84	Human Alternatives to Fetal Bovine Serum for the Expansion of Mesenchymal Stromal Cells from Bone Marrow. Stem Cells, 2009, 27, 2331-2341.	3.2	420
85	Is the intravascular administration of mesenchymal stem cells safe?. Microvascular Research, 2009, 77, 370-376.	2.5	285
86	Retinal pigment epithelial phenotype induced in human adipose tissue-derived mesenchymal stromal cells. Cytotherapy, 2009, 11, 177-188.	0.7	71
87	Induction of retinal pigment epithelium properties in ciliary margin progenitor cells. Clinical and Experimental Ophthalmology, 2008, 36, 358-366.	2.6	17
88	Mesenchymal stem cells and cardiac repair. Journal of Cellular and Molecular Medicine, 2008, 12, 1795-1810.	3.6	99
89	Clinical Protocols for the Isolation and Expansion of Mesenchymal Stromal Cells. Transfusion Medicine and Hemotherapy, 2008, 35, 4-4.	1.6	66
90	Lipoaspirate-derived adult mesenchymal stem cells improve functional outcome during intracerebral hemorrhage by proliferation of endogenous progenitor cells. Neuroscience Letters, 2008, 443, 174-178.	2.1	36

#	Article	IF	Citations
91	Cultivation and differentiation characteristics of human limbal progenitor cells. Tissue and Cell, 2008, 40, 83-88.	2.2	3
92	Basic Biology of Mesenchymal Stem Cells. Transfusion Medicine and Hemotherapy, 2008, 35, 151-152.	1.6	5
93	Integrin expression in stem cells from bone marrow and adipose tissue during chondrogenic differentiation. International Journal of Molecular Medicine, 2008, 21, 271-9.	4.0	58
94	Comparing mesenchymal stromal cells from different human tissues: bone marrow, adipose tissue and umbilical cord blood. Bio-Medical Materials and Engineering, 2008, 18, S71-6.	0.6	75
95	Mesenchymal Stromal Cells from Umbilical Cord Blood. Current Stem Cell Research and Therapy, 2007, 2, 310-323.	1.3	135
96	Human AB Serum and Thrombin-Activated Platelet-Rich Plasma Are Suitable Alternatives to Fetal Calf Serum for the Expansion of Mesenchymal Stem Cells from Adipose Tissue. Stem Cells, 2007, 25, 1270-1278.	3.2	390
97	Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue. Stem Cells, 2006, 24, 1294-1301.	3.2	2,851
98	The Formation of Extracellular Matrix During Chondrogenic Differentiation of Mesenchymal Stem Cells Correlates with Increased Levels of Xylosyltransferase I. Stem Cells, 2006, 24, 2252-2261.	3.2	26
99	In vitro analysis of integrin expression during chondrogenic differentiation of mesenchymal stem cells and chondrocytes upon dedifferentiation in cell culture. International Journal of Molecular Medicine, 2006, 17, 301-7.	4.0	36
100	Stem cell proteomes: A profile of human mesenchymal stem cells derived from umbilical cord blood. Electrophoresis, 2005, 26, 2749-2758.	2.4	92
101	In vitro analysis of matrix proteins and growth factors in dedifferentiating human chondrocytes for tissue-engineered cartilage. Acta Oto-Laryngologica, 2005, 125, 647-653.	0.9	14
102	Differential modulation of integrin expression in chondrocytes during expansion for tissue engineering. In Vivo, 2005, 19, 501-7.	1.3	14
103	In-vitro analysis of the expression of TGFbeta -superfamily-members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cellular and Molecular Biology Letters, 2005, 10, 345-62.	7.0	34
104	Human chondrocytes differentially express matrix modulators during in vitro expansion for tissue engineering. International Journal of Molecular Medicine, 2005, 16, 509-15.	4.0	18
105	Critical Parameters for the Isolation of Mesenchymal Stem Cells from Umbilical Cord Blood. Stem Cells, 2004, 22, 625-634.	3.2	796
106	Expression of collagen and fiber-associated proteins in human septal cartilage during in vitro dedifferentiation. International Journal of Molecular Medicine, 2004, 14, 1015-22.	4.0	30
107	Expansion of human \hat{I}^3/\hat{I} T cells in vitro is differentially regulated by the measles virus glycoproteins. Journal of General Virology, 2003, 84, 1179-1188.	2.9	18
108	Hemagglutinin Protein of Wild-Type Measles Virus Activates Toll-Like Receptor 2 Signaling. Journal of Virology, 2002, 76, 8729-8736.	3.4	435

KAREN BIEBACK

#	Article	lF	CITATION
109	Regulation of gene expression in lymphocytes and antigen-presenting cells by measles virus: consequences for immunomodulation. Journal of Molecular Medicine, 2002, 80, 73-85.	3.9	29
110	Hepatitis A Virus-Specific Immunoglobulin A Mediates Infection of Hepatocytes with Hepatitis A Virus via the Asialoglycoprotein Receptor. Journal of Virology, 2000, 74, 10950-10957.	3.4	102