Tristan Glatard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8435770/publications.pdf

Version: 2024-02-01

304743 254184 3,731 55 22 43 h-index citations g-index papers 62 62 62 6937 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 2016, 3, 160044.	5.3	1,038
2	Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 2020, 582, 84-88.	27.8	634
3	Best practices in data analysis and sharing in neuroimaging using MRI. Nature Neuroscience, 2017, 20, 299-303.	14.8	482
4	Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure. Scientific Reports, 2018, 8, 13650.	3.3	171
5	CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research. Frontiers in Neuroinformatics, 2014, 8, 54.	2.5	161
6	Flexible and Efficient Workflow Deployment of Data-Intensive Applications On Grids With MOTEUR. International Journal of High Performance Computing Applications, 2008, 22, 347-360.	3.7	130
7	The first MICCAI challenge on PET tumor segmentation. Medical Image Analysis, 2018, 44, 177-195.	11.6	116
8	Reproducibility of neuroimaging analyses across operating systems. Frontiers in Neuroinformatics, 2015, 9, 12.	2.5	114
9	A Virtual Imaging Platform for Multi-Modality Medical Image Simulation. IEEE Transactions on Medical Imaging, 2013, 32, 110-118.	8.9	92
10	A Quantitative Comparison of Overlapping and Non-Overlapping Sliding Windows for Human Activity Recognition Using Inertial Sensors. Sensors, 2019, 19, 5026.	3.8	73
11	Sharing brain mapping statistical results with the neuroimaging data model. Scientific Data, 2016, 3, 160102.	5.3	53
12	Head-to-Head Comparison of Two Popular Cortical Thickness Extraction Algorithms: A Cross-Sectional and Longitudinal Study. PLoS ONE, 2015, 10, e0117692.	2.5	53
13	The MNI data-sharing and processing ecosystem. Neurolmage, 2016, 124, 1188-1195.	4.2	48
14	A Virtual Laboratory for Medical Image Analysis. IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 979-985.	3.2	42
15	The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging. ELife, 2021, 10, .	6.0	42
16	A Service-Oriented Architecture enabling dynamic service grouping for optimizing distributed workflow execution. Future Generation Computer Systems, 2008, 24, 720-730.	7.5	36
17	The global impact of science gateways, virtual research environments and virtual laboratories. Future Generation Computer Systems, 2019, 95, 240-248.	7.5	36
18	Boutiques: a flexible framework to integrate command-line applications in computing platforms. GigaScience, 2018, 7, .	6.4	35

#	Article	IF	CITATIONS
19	Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE. Journal of Grid Computing, 2010, 8, 241-259.	3.9	34
20	Cyberinfrastructure for Open Science at the Montreal Neurological Institute. Frontiers in Neuroinformatics, 2016, $10,53$.	2.5	28
21	Brainhack: Developing a culture of open, inclusive, community-driven neuroscience. Neuron, 2021, 109, 1769-1775.	8.1	27
22	Monte Carlo simulation on heterogeneous distributed systems: A computing framework with parallel merging and checkpointing strategies. Future Generation Computer Systems, 2013, 29, 728-738.	7.5	26
23	A classification of file placement and replication methods on grids. Future Generation Computer Systems, 2013, 29, 1395-1406.	7.5	25
24	Multiple sclerosis lesions segmentation from multiple experts: The MICCAI 2016 challenge dataset. Neurolmage, 2021, 244, 118589.	4.2	23
25	Self-healing of workflow activity incidents on distributed computing infrastructures. Future Generation Computer Systems, 2013, 29, 2284-2294.	7.5	18
26	Bundle and Pool Architecture for Multi-Language, Robust, Scalable Workflow Executions. Journal of Grid Computing, 2013, 11, 457-480.	3.9	18
27	Centering inclusivity in the design of online conferences—An OHBM–Open Science perspective. GigaScience, 2021, 10, .	6.4	14
28	Software architectures to integrate workflow engines in science gateways. Future Generation Computer Systems, 2017, 75, 239-255.	7.5	13
29	Comparing perturbation models for evaluating stability of neuroimaging pipelines. International Journal of High Performance Computing Applications, 2020, 34, 491-501.	3.7	13
30	A Serverless Tool for Platform Agnostic Computational Experiment Management. Frontiers in Neuroinformatics, 2019, 13, 12.	2.5	12
31	A Quantitative EEG Toolbox for the MNI Neuroinformatics Ecosystem: Normative SPM of EEG Source Spectra. Frontiers in Neuroinformatics, 2020, 14, 33.	2.5	12
32	An analysis of security vulnerabilities in container images for scientific data analysis. GigaScience, 2021, 10, .	6.4	11
33	High-Resolution Road Vehicle Collision Prediction for the City of Montreal. , 2019, , .		9
34	Workflow-Based Data Parallel Applications on the EGEE Production Grid Infrastructure. Journal of Grid Computing, 2008, 6, 369-383.	3.9	8
35	Modeling the latency on production grids with respect to the execution context. Parallel Computing, 2009, 35, 493-511.	2.1	8
36	File-based localization of numerical perturbations in data analysis pipelines. GigaScience, 2020, 9, .	6.4	8

#	Article	IF	Citations
37	A Benchmark of Data Stream Classification for Human Activity Recognition on Connected Objects. Sensors, 2020, 20, 6486.	3.8	7
38	A multi-dimensional extension of the Lightweight Temporal Compression method., 2018,,.		6
39	Play the Pain: A Digital Strategy for Play-Oriented Research and Action. Frontiers in Psychiatry, 2021, 12, 746477.	2.6	6
40	OrpailleCC: a Library for Data Stream Analysis on Embedded Systems. Journal of Open Source Software, 2019, 4, 1485.	4.6	5
41	Efficient distributed monitoring with active Collaborative Prediction. Future Generation Computer Systems, 2013, 29, 2272-2283.	7.5	4
42	Domain-specific summarization of Life-Science e-experiments from provenance traces. Web Semantics, 2014, 29, 19-30.	2.9	4
43	Numerical uncertainty in analytical pipelines lead to impactful variability in brain networks. PLoS ONE, 2021, 16, e0250755.	2.5	4
44	Modeling Distributed Platforms from Application Traces for Realistic File Transfer Simulation. , 2017, ,		3
45	Performance Evaluation of Big Data Processing Strategies for Neuroimaging. , 2019, , .		3
46	Performance benefits of Intel [®] Optaneâ,,\$\text{\$} DC persistent memory for the parallel processing of large neuroimaging data. , 2020, , .		3
47	Combining analytical modeling, realistic simulation and real experimentation for the optimization of Monte-Carlo applications on the European Grid Infrastructure. Future Generation Computer Systems, 2016, 57, 13-23.	7.5	2
48	Sequential algorithms to split and merge ultra-high resolution 3D images. , 2017, , .		1
49	Evaluation of Pilot Jobs for Apache Spark Applications on HPC Clusters. , 2019, , .		1
50	Accurate Simulation of Operating System Updates in Neuroimaging Using Monte-Carlo Arithmetic. Lecture Notes in Computer Science, 2021, , 14-23.	1.3	1
51	Data Augmentation Through Monte Carlo Arithmetic Leads to More Generalizable Classification in Connectomics. Neurons, Behavior, Data Analysis, and Theory, $0,1,.$	1.2	1
52	Reducing numerical precision preserves classification accuracy in Mondrian Forests. , 2021, , .		1
53	Service failure prediction in supply-chain networks. , 2018, , .		0
54	Predicting computational reproducibility of data analysis pipelines in large population studies using collaborative filtering. , 2018 , , .		0

#	Article	IF	CITATIONS
55	Special isssue of the CCGrid-Life workshop 2017. Concurrency Computation Practice and Experience, 2018, 30, e4520.	2.2	O