Xing Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8435466/publications.pdf

Version: 2024-02-01

		304743	330143
55	1,497	22	37
papers	citations	h-index	g-index
57	57	57	1042
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	FRAGMENTATION OF MOLECULAR CLUMPS AND FORMATION OF A PROTOCLUSTER. Astrophysical Journal, 2015, 804, 141.	4.5	139
2	The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). I. Pilot Survey: Clump Fragmentation. Astrophysical Journal, 2019, 886, 102.	4. 5	104
3	The Galactic Center Molecular Cloud Survey. Astronomy and Astrophysics, 2017, 603, A89.	5.1	85
4	A Massive Prestellar Clump Hosting No High-mass Cores. Astrophysical Journal, 2017, 841, 97.	4.5	84
5	Filamentary Fragmentation and Accretion in High-mass Star-forming Molecular Clouds. Astrophysical Journal, 2018, 855, 9.	4.5	76
6	Distributed Star Formation throughout the Galactic Center Cloud Sgr B2. Astrophysical Journal, 2018, 853, 171.	4.5	74
7	VERY LARGE ARRAY OBSERVATIONS OF AMMONIA IN HIGH-MASS STAR FORMATION REGIONS. Astrophysical Journal, 2014, 790, 84.	4.5	65
8	The TOP-SCOPE Survey of <i>Planck</i> Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17. Astrophysical Journal, Supplement Series, 2018, 234, 28.	7.7	50
9	The Galactic Center Molecular Cloud Survey. Astronomy and Astrophysics, 2017, 603, A90.	5.1	42
10	Dust polarized emission observations of NGC 6334. Astronomy and Astrophysics, 2021, 647, A78.	5.1	41
11	Gravity-driven Magnetic Field at \hat{a}^4 1000 au Scales in High-mass Star Formation. Astrophysical Journal Letters, 2021, 915, L10.	8.3	41
12	Star formation in a high-pressure environment: an SMA view of the Galactic Centre dust ridge. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2373-2388.	4.4	38
13	Cloud–cloud collision as drivers of the chemical complexity in Galactic Centre molecular clouds. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4896-4909.	4.4	38
14	The ALMA Survey of 70 $\hat{1}$ /4m Dark High-mass Clumps in Early Stages (ASHES). II. Molecular Outflows in the Extreme Early Stages of Protocluster Formation. Astrophysical Journal, 2020, 903, 119.	4.5	37
15	The Molecular Gas Environment in the 20 km s ^{â^'1} Cloud in the Central Molecular Zone. Astrophysical Journal, 2017, 839, 1.	4.5	34
16	Star Formation Rates of Massive Molecular Clouds in the Central Molecular Zone. Astrophysical Journal, 2019, 872, 171.	4.5	32
17	Young massive star cluster formation in the Galactic Centre is driven by global gravitational collapse of high-mass molecular clouds. Monthly Notices of the Royal Astronomical Society, 2019, 486, 283-303.	4.4	29
18	CMZoom: Survey Overview and First Data Release. Astrophysical Journal, Supplement Series, 2020, 249, 35.	7.7	27

#	Article	IF	CITATIONS
19	INITIAL FRAGMENTATION IN THE INFRARED DARK CLOUD G28.53â°'0.25. Astrophysical Journal, 2015, 805, 171.	4.5	25
20	DEEPLY EMBEDDED PROTOSTELLAR POPULATION IN THE 20 km s $\langle \sup \hat{a}^1 \sup CLOUD$ OF THE CENTRAL MOLECULAR ZONE. Astrophysical Journal Letters, 2015, 814, L18.	8.3	24
21	A Census of Early-phase High-mass Star Formation in the Central Molecular Zone. Astrophysical Journal, Supplement Series, 2019, 244, 35.	7.7	24
22	The ALMA Survey of 70 $\hat{1}$ /4m Dark High-mass Clumps in Early Stages (ASHES). IV. Star Formation Signatures in G023.477. Astrophysical Journal, 2021, 923, 147.	4.5	23
23	SCOPE: SCUBA-2 Continuum Observations of Pre-protostellar Evolution – survey description and compact source catalogue. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2895-2908.	4.4	22
24	The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry. Astrophysical Journal Letters, 2021, 912, L27.	8.3	21
25	ALMA-IMF. Astronomy and Astrophysics, 2022, 662, A8.	5.1	21
26	ALMA Observations of Massive Clouds in the Central Molecular Zone: Jeans Fragmentation and Cluster Formation. Astrophysical Journal Letters, 2020, 894, L14.	8.3	20
27	Star formation in †the Brickâ€. ALMA reveals an active protocluster in the Galactic centre cloud G0.253+0.016. Monthly Notices of the Royal Astronomical Society, 2021, 503, 77-95.	4.4	19
28	Digging into the Interior of Hot Cores with ALMA (DIHCA). I. Dissecting the High-mass Star-forming Core G335.579-0.292 MM1. Astrophysical Journal, 2021, 909, 199.	4.5	17
29	Observations of Magnetic Fields Surrounding LkHÎ $_{\pm}$ 101 Taken by the BISTRO Survey with JCMT-POL-2. Astrophysical Journal, 2021, 908, 10.	4.5	16
30	CMZoom. II. Catalog of Compact Submillimeter Dust Continuum Sources in the Milky Way's Central Molecular Zone. Astrophysical Journal, Supplement Series, 2020, 251, 14.	7.7	16
31	ALMA Observations of NGC 6334S. II. Subsonic and Transonic Narrow Filaments in a High-mass Star Formation Cloud. Astrophysical Journal, 2022, 926, 165.	4.5	16
32	B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main. Astrophysical Journal, 2022, 926, 163.	4.5	16
33	The ALMA Survey of 70 $1\frac{1}{4}$ m Dark High-mass Clumps in Early Stages (ASHES). III. A Young Molecular Outflow Driven by a Decelerating Jet. Astrophysical Journal, 2021, 913, 131.	4.5	15
34	Molecular Cloud Cores with a High Deuterium Fraction: Nobeyama Single-pointing Survey. Astrophysical Journal, Supplement Series, 2020, 249, 33.	7.7	15
35	ALMA Observations of Massive Clouds in the Central Molecular Zone: Ubiquitous Protostellar Outflows. Astrophysical Journal, 2021, 909, 177.	4.5	14
36	Propionamide (C ₂ H ₅ CONH ₂): The Largest Peptide-like Molecule in Space. Astrophysical Journal, 2021, 919, 4.	4.5	13

#	Article	IF	Citations
37	The JCMT BISTRO Survey: An $850/450\hat{l}^{1/4}$ m Polarization Study of NGC 2071IR in Orion B. Astrophysical Journal, 2021, 918, 85.	4.5	13
38	ALMA ACA and Nobeyama Observations of Two Orion Cores in Deuterated Molecular Lines. Astrophysical Journal, 2020, 895, 119.	4.5	13
39	The Chemical Structure of Young High-mass Star-forming Clumps. II. Parsec-scale CO Depletion and Deuterium Fraction of HCO ⁺ . Astrophysical Journal, 2020, 901, 145.	4.5	13
40	The ALMA Survey of 70 νm Dark High-mass Clumps in Early Stages (ASHES). V. Deuterated Molecules in the 70 μm Dark IRDC G14.492-00.139. Astrophysical Journal, 2022, 925, 144.	4.5	12
41	A Low-mass Cold and Quiescent Core Population in a Massive Star Protocluster. Astrophysical Journal Letters, 2021, 912, L7.	8.3	10
42	Magnetic Fields in Massive Star-forming Regions (MagMaR). II. Tomography through Dust and Molecular Line Polarization in NGC 6334I(N). Astrophysical Journal, 2021, 923, 204.	4.5	10
43	Digging into the Interior of Hot Cores with ALMA (DIHCA). II. Exploring the Inner Binary (Multiple) System Embedded in G335 MM1 ALMA1. Astrophysical Journal, 2022, 929, 68.	4.5	10
44	SMA Observations of the Hot Molecular Core IRAS 18566+0408. Astrophysical Journal, 2017, 847, 87.	4.5	9
45	Submillimeter Array Observations of Extended CO (J = $2~\hat{a}^{2}$ 1) Emission in the Interacting Galaxy NGC 3627. Astrophysical Journal, 2018, 865, 17.	4.5	9
46	A massive Keplerian protostellar disk with flyby-induced spirals in the Central Molecular Zone. Nature Astronomy, 2022, 6, 837-843.	10.1	8
47	First Data Release of the ESO-ARO Public Survey SAMPLING—SMT "All-sky―Mapping of Planck Interstellar Nebulae in the Galaxy. Research Notes of the AAS, 2018, 2, 2.	0.7	7
48	Molecular Cloud Cores with High Deuterium Fractions: Nobeyama Mapping Survey. Astrophysical Journal, Supplement Series, 2021, 256, 25.	7.7	5
49	The initial conditions for young massive cluster formation in the Galactic Centre: convergence of large-scale gas flows. Monthly Notices of the Royal Astronomical Society, 2022, 514, 578-595.	4.4	5
50	SMA observations towards massive clouds in the central molecular zone. Proceedings of the International Astronomical Union, 2013, 9, 191-193.	0.0	0
51	Deeply Embedded Protostellar Population in the Central Molecular Zone Suggested by H ₂ 0 Masers and Dense Cores. Proceedings of the International Astronomical Union, 2016, 11, 99-102.	0.0	0
52	A Brief Update on the <i>CMZoom</i> Survey. Proceedings of the International Astronomical Union, 2016, 11, 90-94.	0.0	0
53	How maser observations unravel the gas motions in the Galactic Center. Proceedings of the International Astronomical Union, 2017, 13, 176-179.	0.0	0

Erratum "A Low-mass Cold and Quiescent Core Population in a Massive Star Protocluster―(2021, ApJL,) Tj ETQqQ 0 0 rgBT /Overloo

#	Article	IF	CITATIONS
55	Little Massive Substructure in CMZ Molecular Clouds. EAS Publications Series, 2015, 75-76, 93-96.	0.3	0