Michael V Berridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8435380/publications.pdf

Version: 2024-02-01

91 papers 7,206 citations

94433 37 h-index 83 g-index

98 all docs 98 docs citations 98 times ranked 12939 citing authors

#	Article	IF	CITATIONS
1	Bioenergetic and Metabolic Adaptation in Tumor Progression and Metastasis. Frontiers in Oncology, 2022, 12, 857686.	2.8	8
2	SMAD4 loss limits the vulnerability of pancreatic cancer cells to complex I inhibition via promotion of mitophagy. Oncogene, 2021, 40, 2539-2552.	5.9	18
3	A simple indirect colorimetric assay for measuring mitochondrial energy metabolism based on uncoupling sensitivity. Biochemistry and Biophysics Reports, 2020, 24, 100858.	1.3	O
4	Mitochondrial movement between mammalian cells: an emerging physiological phenomenon. , 2020, , 515-546.		4
5	Mitochondrial DNA Affects the Expression of Nuclear Genes Involved in Immune and Stress Responses in a Breast Cancer Model. Frontiers in Physiology, 2020, 11, 543962.	2.8	6
6	Vaccines adjuvanted with an NKT cell agonist induce effective T-cell responses in models of CNS lymphoma. Immunotherapy, 2020, 12, 395-406.	2.0	10
7	High-intensity interval exercise increases humanin, a mitochondrial encoded peptide, in the plasma and muscle of men. Journal of Applied Physiology, 2020, 128, 1346-1354.	2.5	34
8	Sodium sulfide selectively induces oxidative stress, DNA damage, and mitochondrial dysfunction and radiosensitizes glioblastoma (GBM) cells Redox Biology, 2019, 26, 101220.	9.0	32
9	Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metabolism, 2019, 29, 399-416.e10.	16.2	190
10	Mitochondria break through cellular boundaries. Aging, 2019, 11, 4308-4309.	3.1	1
10		3.1	20
	Mitochondria break through cellular boundaries. Aging, 2019, 11, 4308-4309. Mitochondrial Genome Transfer to Tumor Cells Breaks The Rules and Establishes a New Precedent in		
11	Mitochondria break through cellular boundaries. Aging, 2019, 11, 4308-4309. Mitochondrial Genome Transfer to Tumor Cells Breaks The Rules and Establishes a New Precedent in Cancer Biology. Molecular and Cellular Oncology, 2018, 5, e1023929. Mitochondrial transfer between cells: Methodological constraints in cell culture and animal	0.7	20
11 12	Mitochondrial break through cellular boundaries. Aging, 2019, 11, 4308-4309. Mitochondrial Genome Transfer to Tumor Cells Breaks The Rules and Establishes a New Precedent in Cancer Biology. Molecular and Cellular Oncology, 2018, 5, e1023929. Mitochondrial transfer between cells: Methodological constraints in cell culture and animal models. Analytical Biochemistry, 2018, 552, 75-80. Metabolic reprogramming of mitochondrial respiration in metastatic cancer. Cancer and Metastasis	0.7 2.4	20
11 12 13	Mitochondrial Genome Transfer to Tumor Cells Breaks The Rules and Establishes a New Precedent in Cancer Biology. Molecular and Cellular Oncology, 2018, 5, e1023929. Mitochondrial transfer between cells: Methodological constraints in cell culture and animal models. Analytical Biochemistry, 2018, 552, 75-80. Metabolic reprogramming of mitochondrial respiration in metastatic cancer. Cancer and Metastasis Reviews, 2018, 37, 643-653. Intercellular Communication in Tumor Biology: A Role for Mitochondrial Transfer. Frontiers in	0.7 2.4 5.9	20 25 36
11 12 13	Mitochondrial Genome Transfer to Tumor Cells Breaks The Rules and Establishes a New Precedent in Cancer Biology. Molecular and Cellular Oncology, 2018, 5, e1023929. Mitochondrial transfer between cells: Methodological constraints in cell culture and animal models. Analytical Biochemistry, 2018, 552, 75-80. Metabolic reprogramming of mitochondrial respiration in metastatic cancer. Cancer and Metastasis Reviews, 2018, 37, 643-653. Intercellular Communication in Tumor Biology: A Role for Mitochondrial Transfer. Frontiers in Oncology, 2018, 8, 344. Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints.	0.7 2.4 5.9 2.8	20 25 36 44
11 12 13 14	Mitochondrial Genome Transfer to Tumor Cells Breaks The Rules and Establishes a New Precedent in Cancer Biology. Molecular and Cellular Oncology, 2018, 5, e1023929. Mitochondrial transfer between cells: Methodological constraints in cell culture and animal models. Analytical Biochemistry, 2018, 552, 75-80. Metabolic reprogramming of mitochondrial respiration in metastatic cancer. Cancer and Metastasis Reviews, 2018, 37, 643-653. Intercellular Communication in Tumor Biology: A Role for Mitochondrial Transfer. Frontiers in Oncology, 2018, 8, 344. Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints. Nature Communications, 2018, 9, 2221.	0.7 2.4 5.9 2.8	20 25 36 44 44

#	Article	IF	CITATIONS
19	Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations. BMC Cancer, 2016, 16, 726.	2.6	15
20	Horizontal transfer of mitochondria between mammalian cells: beyond co-culture approaches. Current Opinion in Genetics and Development, 2016, 38, 75-82.	3.3	68
21	N,N-Bis(glycityl)amines as anti-cancer drugs. Bioorganic and Medicinal Chemistry, 2016, 24, 3932-3939.	3.0	5
22	Mitochondrial Transfer from Astrocytes to Neurons following Ischemic Insult: Guilt by Association?. Cell Metabolism, 2016, 24, 376-378.	16.2	43
23	The î"133p53 isoform and its mouse analogue î"122p53 promote invasion and metastasis involving pro-inflammatory molecules interleukin-6 and CCL2. Oncogene, 2016, 35, 4981-4989.	5.9	29
24	Tumor Cell Complexity and Metabolic Flexibility in Tumorigenesis and Metastasis., 2015,, 23-43.		3
25	Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA. Cell Metabolism, 2015, 21, 81-94.	16.2	582
26	Mitochondrial DNA in Tumor Initiation, Progression, and Metastasis: Role of Horizontal mtDNA Transfer. Cancer Research, 2015, 75, 3203-3208.	0.9	56
27	The role of mitochondrial electron transport in tumorigenesis and metastasis. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1454-1463.	2.4	47
28	Anti-Leukemic Activity of Ubiquinone-Based Compounds Targeting Trans-plasma Membrane Electron Transport. Journal of Medicinal Chemistry, 2013, 56, 3168-3176.	6.4	6
29	Cell Hierarchy, Metabolic Flexibility and Systems Approaches to Cancer Treatment. Current Pharmaceutical Biotechnology, 2013, 14, 289-299.	1.6	15
30	Sphere formation reverses the metastatic and cancer stem cell phenotype of the murine mammary tumour 4T1, independently of the putative cancer stem cell marker Sca-1. Cancer Letters, 2012, 323, 20-28.	7.2	12
31	Mitochondrial Genome-Knockout Cells Demonstrate a Dual Mechanism of Action for the Electron Transport Complex I Inhibitor Mycothiazole. Marine Drugs, 2012, 10, 900-917.	4.6	13
32	The novel phloroglucinol PMT7 kills glycolytic cancer cells by blocking autophagy and sensitizing to nutrient stress. Journal of Cellular Biochemistry, 2011, 112, 1869-1879.	2.6	13
33	The anti-cancer, anti-inflammatory and tuberculostatic activities of a series of 6,7-substituted-5,8-quinolinequinones. Bioorganic and Medicinal Chemistry, 2010, 18, 3238-3251.	3.0	68
34	Evidence for NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated quinone-dependent redox cycling via plasma membrane electron transport: A sensitive cellular assay for NQO1. Free Radical Biology and Medicine, 2010, 48, 421-429.	2.9	31
35	Inhibition of trans-plasma membrane electron transport: A potential anti-leukemic strategy. Leukemia Research, 2010, 34, 1630-1635.	0.8	14
36	Effects of Mitochondrial Gene Deletion on Tumorigenicity of Metastatic Melanoma: Reassessing the Warburg Effect. Rejuvenation Research, 2010, 13, 139-141.	1.8	35

#	Article	IF	Citations
37	Metabolic flexibility and cell hierarchy in metastatic cancer. Mitochondrion, 2010, 10, 584-588.	3.4	58
38	The level of glycolytic metabolism in acute myeloid leukemia blasts at diagnosis is prognostic for clinical outcome. Journal of Leukocyte Biology, 2010, 89, 51-55.	3.3	90
39	The anti-cancer drug, phenoxodiol, kills primary myeloid and lymphoid leukemic blasts and rapidly proliferating T cells. Haematologica, 2009, 94, 928-934.	3.5	21
40	Targeting mitochondrial permeability in cancer drug development. Molecular Nutrition and Food Research, 2009, 53, 76-86.	3.3	32
41	Rossinones A and B, Biologically Active Meroterpenoids from the Antarctic Ascidian, <i>Aplidium</i> species. Journal of Organic Chemistry, 2009, 74, 9195-9198.	3.2	81
42	Ceramides that Mediate Apoptosis Reduce Glucose Uptake and Transporter Affinity for Glucose in Human Leukaemic Cell Lines but Not in Neutrophils. Basic and Clinical Pharmacology and Toxicology, 2008, 86, 114-121.	0.0	0
43	Glycolytic metabolism confers resistance to combined all-trans retinoic acid and arsenic trioxide-induced apoptosis in HL60ï0 cells. Leukemia Research, 2008, 32, 327-333.	0.8	15
44	Synthesis and anti-inflammatory structure–activity relationships of thiazine–quinoline–quinones: Inhibitors of the neutrophil respiratory burst in a model of acute gouty arthritis. Bioorganic and Medicinal Chemistry, 2008, 16, 9432-9442.	3.0	37
45	Orthidines A–E, tubastrine, 3,4-dimethoxyphenethyl-β-guanidine, and 1,14-sperminedihomovanillamide: potential anti-inflammatory alkaloids isolated from the New Zealand ascidian Aplidium orthium that act as inhibitors of neutrophil respiratory burst. Tetrahedron, 2008, 64, 5748-5755.	1.9	44
46	Plasma membrane redox and cancer drug development. BioFactors, 2008, 34, 181-182.	5 . 4	2
47	Differential effects of redoxâ€cycling and arylating quinones on transâ€plasma membrane electron transport. BioFactors, 2008, 34, 183-190.	5.4	9
48	Plasma membrane electron transport in (i) Saccharomyces cerevisiae (i) depends on the presence of mitochondrial respiratory subunits. FEMS Yeast Research, 2008, 8, 897-905.	2.3	15
49	Antitumor Activity of Bis-indole Derivatives. Journal of Medicinal Chemistry, 2008, 51, 4563-4570.	6.4	95
50	The Level of Glycolytic Metabolism of AML Blasts May Predict Drug Sensitivity and Prognosis in Patients with AML. Blood, 2008, 112, 4022-4022.	1.4	0
51	An Antiproliferative Bis-prenylated Quinone from the New Zealand Brown Alga <i>Perithalia capillaris</i> . Journal of Natural Products, 2007, 70, 2042-2044.	3.0	31
52	Anti-inflammatory Thiazine Alkaloids Isolated from the New Zealand AscidianAplidiumsp.:Â Inhibitors of the Neutrophil Respiratory Burst in a Model of Gouty Arthritis. Journal of Natural Products, 2007, 70, 936-940.	3.0	68
53	Cell surface oxygen consumption: A major contributor to cellular oxygen consumption in glycolytic cancer cell lines. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 170-177.	1.0	141
54	Interaction of heme and heme–hemopexin with an extracellular oxidant system used to measure cell growth-associated plasma membrane electron transport. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1107-1117.	1.0	11

#	Article	IF	CITATIONS
55	E/Z-Rubrolide O, an Anti-inflammatory Halogenated Furanone from the New Zealand Ascidian Synoicum n. sp Journal of Natural Products, 2007, 70, 111-113.	3.0	70
56	The antiproliferative effects of phenoxodiol are associated with inhibition of plasma membrane electron transport in tumour cell lines and primary immune cells. Biochemical Pharmacology, 2007, 74, 1587-1595.	4.4	46
57	Plasma Membrane Electron Transport: A New Target for Cancer Drug Development. Current Molecular Medicine, 2006, 6, 895-904.	1.3	59
58	Mitochondrial gene knockout HL60ÏO cells show preferential differentiation into monocytes/macrophages. Leukemia Research, 2005, 29, 1163-1170.	0.8	11
59	Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review, 2005, 11, 127-152.	2.1	1,638
60	Anti-inflammatory Sesquiterpene-quinones from the New Zealand SpongeDysideacf.cristagalli. Journal of Natural Products, 2005, 68, 1431-1433.	3.0	56
61	Multiple proteins with single activities or a single protein with multiple activities: The conundrum of cell surface NADH oxidoreductases. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 108-119.	1.0	42
62	Distincttrans-plasma membrane redox pathways reduce cell-impermeable dyes in HeLa cells. Redox Report, 2004, 9, 302-306.	4.5	27
63	Peloruside A enhances apoptosis in H-ras-transformed cells and is cytotoxic to proliferating T cells. Apoptosis: an International Journal on Programmed Cell Death, 2004, 9, 785-796.	4.9	34
64	Mitochondrial geneâ€knockout (Ï≺sup>0) cells: A versatile model for exploring the secrets of transâ€plasma membrane electron transport. BioFactors, 2004, 20, 213-220.	5.4	36
65	Cell surface oxygen consumption by mitochondrial gene knockout cells. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1656, 79-87.	1.0	94
66	Hemopoietic cell transformation is associated with failure to downregulate glucose uptake during the G2/M phase of the cell cycle. Experimental Cell Research, 2004, 293, 321-330.	2.6	4
67	Clathriol B, a New $14\hat{l}^2$ Marine Sterol from the New Zealand Sponge Clathria lissosclera. Australian Journal of Chemistry, 2003, 56, 279.	0.9	20
68	Kottamides Aâ^'D:Â Novel Bioactive Imidazolone-Containing Alkaloids from the New Zealand AscidianPycnoclavellakottae. Journal of Organic Chemistry, 2002, 67, 5402-5404.	3.2	63
69	A New Biologically Active Malyngamide from a New Zealand Collection of the Sea HareBursatella leachii. Journal of Natural Products, 2002, 65, 630-631.	3.0	49
70	Induction of apoptosis by the marine sponge (Mycale) metabolites, mycalamide A and pateamine. Apoptosis: an International Journal on Programmed Cell Death, 2001, 6, 207-219.	4.9	99
71	Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening anti-inflammatory agents. Journal of Immunological Methods, 2000, 238, 59-68.	1.4	290
72	Cell-Surface NAD(P)H-Oxidase: Relationship to Trans-Plasma Membrane NADH-Oxidoreductase and a Potential Source of Circulating NADH-Oxidase. Antioxidants and Redox Signaling, 2000, 2, 277-288.	5.4	41

#	Article	IF	CITATIONS
73	High-Capacity Redox Control at the Plasma Membrane of Mammalian Cells: Trans-Membrane, Cell Surface, and Serum NADH-Oxidases. Antioxidants and Redox Signaling, 2000, 2, 231-242.	5.4	76
74	IL-3 induces apoptosis in a ras-transformed myeloid cell line. Apoptosis: an International Journal on Programmed Cell Death, 1999, 4, 71-80.	4.9	2
75	Distinct regulation of glucose transport by interleukin-3 and oncogenes in a murine bone marrow-derived cell line. Biochemical Pharmacology, 1999, 57, 387-396.	4.4	11
76	N-Glycosylation of glucose transporter-1 (Glut-1) is associated with increased transporter affinity for glucose in human leukemic cells. Leukemia Research, 1999, 23, 395-401.	0.8	30
77	Trans-plasma membrane electron transport: A cellular assay for NADH- and NADPH-oxidase based on extracellular, superoxide-mediated reduction of the sulfonated tetrazolium salt WST-1. Protoplasma, 1998, 205, 74-82.	2.1	77
78	Transforming oncogenes regulate glucose transport by increasing transporter affinity for glucose: Contrasting effects of oncogenes and heat stress in a murine marrow-derived cell line. Life Sciences, 1998, 63, 1887-1903.	4.3	12
79	Acute Regulation of Glucose Transport After Activation of Human Peripheral Blood Neutrophils by Phorbol Myristate Acetate, fMLP, and Granulocyte-Macrophage Colony-Stimulating Factor. Blood, 1998, 91, 649-655.	1.4	73
80	Acute Regulation of Glucose Transport After Activation of Human Peripheral Blood Neutrophils by Phorbol Myristate Acetate, fMLP, and Granulocyte-Macrophage Colony-Stimulating Factor. Blood, 1998, 91, 649-655.	1.4	4
81	The Hemopoietic Growth Factor, Interleukin-3, Promotes Glucose Transport by Increasing the Specific Activity and Maintaining the Affinity for Glucose of Plasma Membrane Glucose Transporters. Journal of Biological Chemistry, 1997, 272, 17276-17282.	3.4	28
82	Regulation of glucose transport by interleukin-3 in growth factor-dependent and oncogene-transformed bone marrow-derived cell lines. Leukemia Research, 1997, 21, 609-618.	0.8	19
83	Evidence that cell survival is controlled by interleukin-3 independently of cell proliferation. Journal of Cellular Physiology, 1995, 163, 466-476.	4.1	14
84	Conserved Region of the Cytoplasmic Domain is not Essential for Erythropoietin-Dependent Growth. Growth Factors, 1995, 12, 263-276.	1.7	8
85	Characterization of the Cellular Reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular Localization, Substrate Dependence, and Involvement of Mitochondrial Electron Transport in MTT Reduction. Archives of Biochemistry and Biophysics, 1993, 303, 474-482.	3.0	1,190
86	The protein kinase C inhibitor, calphostin C, inhibits succinate-dependent mitochondrial reduction of MTT by a mechanism that does not involve protein kinase C. Biochemical and Biophysical Research Communications, 1992, 185, 806-811.	2.1	15
87	A new class of cell surface antigens. Quantitative absorption studies defining cell-lineage-specific antigens on hemopoietic cells Journal of Experimental Medicine, 1979, 150, 977-986.	8.5	13
88	Translation of Xenopus vitellogenin mRNA during primary and secondary induction. Nature, 1978, 273, 401-403.	27.8	49
89	Translation of Xenopus liver messenger RNA in Xenopus oocytes: Vitellogenin synthesis and conversion to yolk platelet proteins. Cell, 1976, 8, 283-297.	28.9	81
90	Characterization of Polysomes from Xenopus Liver Synthesizing Vitellogenin and Translation of Vitellogenin and Albumin Messenger RNA's in vitro. FEBS Journal, 1976, 62, 161-171.	0.2	77

#	Article	IF	CITATIONS
91	An assay for the endonucleolytic cleavage of RNA to large oligonucleotides. Analytical Biochemistry, 1973, 53, 603-612.	2.4	15