Yan Yan Shery Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8435376/publications.pdf Version: 2024-02-01

331670 289244 45 2,203 21 40 citations g-index h-index papers 49 49 49 3818 docs citations times ranked citing authors all docs

YAN YAN SHERY HUANC

#	Article	IF	CITATIONS
1	Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties. Polymers, 2012, 4, 275-295.	4.5	517
2	Polymers with aligned carbon nanotubes: Active composite materials. Polymer, 2008, 49, 3841-3854.	3.8	186
3	Dispersion and Alignment of Carbon Nanotubes in Liquid Crystalline Polymers and Elastomers. Advanced Materials, 2010, 22, 3436-3440.	21.0	162
4	Mechanics of biological networks: from the cell cytoskeleton to connective tissue. Soft Matter, 2014, 10, 1864.	2.7	150
5	Strength of Nanotubes, Filaments, and Nanowires From Sonicationâ€Induced Scission. Advanced Materials, 2009, 21, 3945-3948.	21.0	126
6	Tailoring the Electrical Properties of Carbon Nanotube–Polymer Composites. Advanced Functional Materials, 2010, 20, 4062-4068.	14.9	125
7	Microâ€Raman spectroscopy of algae: Composition analysis and fluorescence background behavior. Biotechnology and Bioengineering, 2010, 105, 889-898.	3.3	112
8	Low-Voltage Continuous Electrospinning Patterning. ACS Applied Materials & Interfaces, 2016, 8, 32120-32131.	8.0	75
9	Dispersion and rheology of carbon nanotubes in polymers. International Journal of Material Forming, 2008, 1, 63-74.	2.0	56
10	Dissolving and Aligning Carbon Nanotubes in Thermotropic Liquid Crystals. Langmuir, 2011, 27, 13254-13260.	3.5	55
11	Polysiloxane Surfactants for the Dispersion of Carbon Nanotubes in Nonpolar Organic Solvents. Langmuir, 2009, 25, 12325-12331.	3.5	49
12	Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Science Advances, 2020, 6, .	10.3	44
13	Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint. Future Science OA, 2017, 3, FSO173.	1.9	38
14	Harnessing Surface-Functionalized Metal–Organic Frameworks for Selective Tumor Cell Capture. Chemistry of Materials, 2017, 29, 8052-8056.	6.7	38
15	3D Printing of Liquid Crystalline Hydroxypropyl Cellulose—toward Tunable and Sustainable Volumetric Photonic Structures. Advanced Functional Materials, 2022, 32, .	14.9	38
16	Broad Bandwidth, Selfâ€Powered Acoustic Sensor Created by Dynamic Nearâ€Field Electrospinning of Suspended, Transparent Piezoelectric Nanofiber Mesh. Small, 2020, 16, e2000581.	10.0	36
17	Multi-length scale bioprinting towards simulating microenvironmental cues. Bio-Design and Manufacturing, 2018, 1, 77-88.	7.7	34
18	Nanotubes Complexed with DNA and Proteins for Resistive-Pulse Sensing. ACS Nano, 2013, 7, 8857-8869.	14.6	30

YAN YAN SHERY HUANG

#	Article	IF	CITATIONS
19	Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes. Acta Biomaterialia, 2018, 78, 111-122.	8.3	27
20	Rapid Patterning of 1-D Collagenous Topography as an ECM Protein Fibril Platform for Image Cytometry. PLoS ONE, 2014, 9, e93590.	2.5	25
21	Image-Assisted Microvessel-on-a-Chip Platform for Studying Cancer Cell Transendothelial Migration Dynamics. Scientific Reports, 2018, 8, 12480.	3.3	25
22	Bioâ€assembling Macroâ€Scale, Lumenized Airway Tubes of Defined Shape via Multiâ€Organoid Patterning and Fusion. Advanced Science, 2021, 8, 2003332.	11.2	22
23	Fabrication of Designable and Suspended Microfibers via Low-Voltage 3D Micropatterning. ACS Applied Materials & Interfaces, 2019, 11, 19679-19690.	8.0	21
24	On-chip perivascular <i>niche</i> supporting stemness of patient-derived glioma cells in a serum-free, flowable culture. Lab on A Chip, 2021, 21, 2343-2358.	6.0	19
25	3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. Nature Communications, 2021, 12, 6260.	12.8	19
26	Transparent Electrode with a Nanostructured Coating. ACS Nano, 2011, 5, 2082-2089.	14.6	18
27	Nearâ€Field Electrospinning Patterning Polycaprolactone and Polycaprolactone/Collagen Interconnected Fiber Membrane. Macromolecular Materials and Engineering, 2018, 303, 1700463.	3.6	18
28	Fabrication and electromechanical characterization of near-field electrospun composite fibers. Nanotechnology, 2012, 23, 105305.	2.6	17
29	Dynamics of filopodium-like protrusion and endothelial cellular motility on one-dimensional extracellular matrix fibrils. Interface Focus, 2014, 4, 20130060.	3.0	17
30	Spectroscopic characterization of protein-wrapped single-wall carbon nanotubes and quantification of their cellular uptake in multiple cell generations. Nanotechnology, 2013, 24, 265102.	2.6	14
31	Solution Formulation and Rheology for Fabricating Extracellular Matrix-Derived Fibers Using Low-Voltage Electrospinning Patterning. ACS Biomaterials Science and Engineering, 2019, 5, 3676-3684.	5.2	14
32	Bioprinting of three-dimensional culture models and organ-on-a-chip systems. MRS Bulletin, 2017, 42, 593-599.	3.5	11
33	Additive batch electrospinning patterning of tethered gelatin hydrogel fibres with swelling-induced fibre curling. Additive Manufacturing, 2020, 36, 101456.	3.0	11
34	Variation in Carbon Nanotube Polymer Composite Conductivity from the Effects of Processing, Dispersion, Aging and Sample Size. Materials Express, 2011, 1, 315-328.	0.5	9
35	Advances and innovations in electrospinning technology. , 2021, , 45-81.		9
36	Guided Assembly and Patterning of Intrinsically Fluorescent Amyloid Fibers with Long-Range Order. Nano Letters, 2021, 21, 938-945.	9.1	8

#	Article	IF	CITATIONS
37	Cancer cell migration on straight, wavy, loop and grid microfibre patterns. Biofabrication, 2022, 14, 024102.	7.1	8
38	100 m min ^{â^'1} Industrialâ€6cale Flexographic Printing of Grapheneâ€Incorporated Conduct Ink. Advanced Engineering Materials, 2022, 24, 2101217.	tive 3.5	7
39	An empirical model to evaluate the effects of environmental humidity on the formation of wrinkled, creased and porous fibre morphology from electrospinning. Scientific Reports, 2020, 10, 18783.	3.3	6
40	Guided assembly of cancer ellipsoid on suspended hydrogel microfibers estimates multi-cellular traction force. Physical Biology, 2021, 18, 036001.	1.8	2
41	Low-Voltage Continuous Electrospinning: A Versatile Protocol for Patterning Nano- and Micro-Scaled Fibers for Cell Interface. Methods in Molecular Biology, 2021, 2147, 125-135.	0.9	2
42	Direct-write conductive fibres for soft electronics. , 2012, , .		0
43	Centrifuge Coating for Low-Waste Solution Processing of Transparent Nanostructured Electrodes. IEEE Nanotechnology Magazine, 2013, 12, 874-878.	2.0	Ο
44	Macromol. Mater. Eng. 2/2018. Macromolecular Materials and Engineering, 2018, 303, 1870009.	3.6	0
45	Acoustic Sensors: Broad Bandwidth, Selfâ€Powered Acoustic Sensor Created by Dynamic Nearâ€Field Electrospinning of Suspended, Transparent Piezoelectric Nanofiber Mesh (Small 28/2020). Small, 2020, 16, 2070157.	10.0	0