Maria Lyngaas L Torgersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8433945/publications.pdf

Version: 2024-02-01

47 papers 7,480 citations

249298 26 h-index 242451 47 g-index

50 all docs 50 docs citations

times ranked

50

18937 citing authors

#	Article	IF	CITATIONS
1	Measuring Autophagic Cargo Flux with Keima-Based Probes. Methods in Molecular Biology, 2022, 2445, 99-115.	0.4	5
2	Mechanism of cellular uptake and cytotoxicity of paclitaxel loaded lipid nanocapsules in breast cancer cells. International Journal of Pharmaceutics, 2021, 597, 120217.	2.6	23
3	Cabazitaxel-loaded poly(alkyl cyanoacrylate) nanoparticles: Toxicity and changes in the proteome of breast, colon and prostate cancer cells. Nanotoxicology, 2021, 15, 1-20.	1.6	5
4	Perturbation of Cellular Redox Homeostasis Dictates Divergent Effects of Polybutyl Cyanoacrylate (PBCA) Nanoparticles on Autophagy. Cells, 2021, 10, 3432.	1.8	4
5	Biological response and cytotoxicity induced by lipid nanocapsules. Journal of Nanobiotechnology, 2020, 18, 5.	4.2	26
6	Structural Variants of poly(alkylcyanoacrylate) Nanoparticles Differentially Affect LC3 and Autophagic Cargo Degradation. Journal of Biomedical Nanotechnology, 2020, 16, 432-445.	0.5	5
7	The kinase PERK and the transcription factor ATF4 play distinct and essential roles in autophagy resulting from tunicamycin-induced ER stress. Journal of Biological Chemistry, 2019, 294, 8197-8217.	1.6	113
8	Small variations in nanoparticle structure dictate differential cellular stress responses and mode of cell death. Nanotoxicology, 2019, 13, 761-782.	1.6	23
9	A Gain-of-Function Mutation in <i>EPO</i> ii>in Familial Erythrocytosis. New England Journal of Medicine, 2018, 378, 924-930.	13.9	42
10	PtdIns3P controls mTORC1 signaling through lysosomal positioning. Journal of Cell Biology, 2017, 216, 4217-4233.	2.3	124
11	Polyporus squamosus Lectin 1a (PSL1a) Exhibits Cytotoxicity in Mammalian Cells by Disruption of Focal Adhesions, Inhibition of Protein Synthesis and Induction of Apoptosis. PLoS ONE, 2017, 12, e0170716.	1.1	10
12	Ceramide-containing liposomes with doxorubicin: time and cell-dependent effect of C6 and C12 ceramide. Oncotarget, 2017, 8, 76921-76934.	0.8	15
13	PIKfyve inhibition increases exosome release and induces secretory autophagy. Cellular and Molecular Life Sciences, 2016, 73, 4717-4737.	2.4	187
14	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
15	Cellular effects of fluorodeoxyglucose: Global changes in the lipidome and alteration in intracellular transport. Oncotarget, 2016, 7, 79885-79900.	0.8	5
16	The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget, 2016, 7, 86871-86888.	0.8	21
17	Novel actions of 2-deoxy- <scp>D</scp> -glucose: protection against Shiga toxins and changes in cellular lipids. Biochemical Journal, 2015, 470, 23-37.	1.7	13
18	Cell-Penetrating Peptides: Possibilities and Challenges for Drug Delivery in Vitro and in Vivo. Molecules, 2015, 20, 13313-13323.	1.7	51

#	Article	IF	Citations
19	Retinoic acid-induced IgG production in TLR-activated human primary B cells involves ULK1-mediated autophagy. Autophagy, 2015, 11, 460-471.	4.3	23
20	Bone marrow stroma-derived PGE2 protects BCP-ALL cells from DNA damage-induced p53 accumulation and cell death. Molecular Cancer, 2015, 14, 14.	7.9	52
21	Geldanamycin Enhances Retrograde Transport of Shiga Toxin in HEp-2 Cells. PLoS ONE, 2015, 10, e0129214.	1.1	3
22	Autophagy and senescence, stress responses induced by the DNA-damaging mycotoxin alternariol. Toxicology, 2014, 326, 119-129.	2.0	42
23	<scp>LYST</scp> Affects Lysosome Size and Quantity, but not Trafficking or Degradation Through Autophagy or Endocytosis. Traffic, 2014, 15, 1390-1405.	1.3	37
24	Targeting autophagy potentiates the apoptotic effect of histone deacetylase inhibitors in t(8;21) AML cells. Blood, 2013, 122, 2467-2476.	0.6	101
25	Death of multiple myeloma cells induced by cAMP-signaling involves downregulation of Mcl-1 via the JAK/STAT pathway. Cancer Letters, 2013, 335, 323-331.	3. 2	28
26	Base excision repair AP endonucleases and mismatch repair act together to induce checkpoint-mediated autophagy. Nature Communications, 2013, 4, 2674.	5.8	54
27	Autophagy. Autophagy, 2013, 9, 2175-2177.	4.3	16
28	Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy, 2013, 9, 1475-1490.	4.3	83
29	Toll-like receptor 4 facilitates binding of Shiga toxin to colon carcinoma and primary umbilical vein endothelial cells. FEMS Immunology and Medical Microbiology, 2011, 61, 63-75.	2.7	14
30	Shiga toxin and its use in targeted cancer therapy and imaging. Microbial Biotechnology, 2011, 4, 32-46.	2.0	95
31	Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Letters, 2010, 584, 2626-2634.	1.3	108
32	Interplay between Toxin Transport and Flotillin Localization. PLoS ONE, 2010, 5, e8844.	1.1	42
33	Endocytosis and retrograde transport of Shiga toxin. Toxicon, 2010, 56, 1181-1185.	0.8	125
34	The Intracellular Journey of Shiga Toxins~!2009-05-12~!2009-06-03~!2010-03-09~!. The Open Toxinology Journal, 2010, 3, 3-12.	0.9	11
35	Characterization of clathrin and Syk interaction upon Shiga toxin binding. Cellular Signalling, 2009, 21, 1161-1168.	1.7	21
36	Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochemistry and Cell Biology, 2008, 129, 267-276.	0.8	152

#	Article	IF	Citations
37	The Mitogen-activated Protein Kinase p38 Links Shiga Toxin-dependent Signaling and Trafficking. Molecular Biology of the Cell, 2008, 19, 95-104.	0.9	52
38	Protein Kinase Cδ Is Activated by Shiga Toxin and Regulates Its Transport. Journal of Biological Chemistry, 2007, 282, 16317-16328.	1.6	51
39	Shiga Toxin Regulates Its Entry in a Syk-dependent Manner. Molecular Biology of the Cell, 2006, 17, 1096-1109.	0.9	77
40	The A-subunit of surface-bound Shiga toxin stimulates clathrin-dependent uptake of the toxin. FEBS Journal, 2005, 272, 4103-4113.	2.2	50
41	Caveolae: Stable Membrane Domains with a Potential for Internalization. Traffic, 2005, 6, 720-724.	1.3	95
42	Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin. Journal of Cell Science, 2004, 117, 2321-2331.	1.2	121
43	Pathways followed by protein toxins into cells. International Journal of Medical Microbiology, 2004, 293, 483-490.	1.5	134
44	Endosome-to-Golgi Transport Is Regulated by Protein Kinase A Type IIα. Journal of Biological Chemistry, 2003, 278, 1991-1997.	1.6	20
45	Pathways followed by ricin and Shiga toxin into cells. Histochemistry and Cell Biology, 2002, 117, 131-141.	0.8	150
46	Internalization of cholera toxin by different endocytic mechanisms. Journal of Cell Science, 2001, 114, 3737-3747.	1.2	343
47	Hepatocyte Growth Factor (HGF) Induces Interleukin-11 Secretion From Osteoblasts: A Possible Role for HGF in Myeloma-Associated Osteolytic Bone Disease. Blood, 1999, 94, 3883-3888.	0.6	5