
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8433328/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Warming drives a â€~hummockification' of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytologist, 2022, 234, 2032-2043.	7.3	11
2	Transcriptional acclimation and spatial differentiation characterize drought response by the ectomycorrhizal fungus <i>Suillus pungens</i> . New Phytologist, 2022, 234, 1910-1913.	7.3	7
3	Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. Global Change Biology, 2022, 28, 2527-2540.	9.5	68
4	Best practices in metabarcoding of fungi: From experimental design to results. Molecular Ecology, 2022, 31, 2769-2795.	3.9	87
5	Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi. New Phytologist, 2021, 230, 774-792.	7.3	37
6	Distinct carbon fractions drive a generalisable twoâ€pool model of fungal necromass decomposition. Functional Ecology, 2021, 35, 796-806.	3.6	14
7	Root presence modifies the longâ€ŧerm decomposition dynamics of fungal necromass and the associated microbial communities in a boreal forest. Molecular Ecology, 2021, 30, 1921-1935.	3.9	23
8	Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 2021, 12, 2138.	12.8	26
9	Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nature Communications, 2021, 12, 3484.	12.8	116
10	Early chemical changes during wood decomposition are controlled by fungal communities inhabiting stems at treefall in a tropical dry forest. Plant and Soil, 2021, 466, 373-389.	3.7	7
11	The slippery nature of ectomycorrhizal host specificity: <i>Suillus</i> fungi associated with novel pinoid (<i>Picea</i>) and abietoid (<i>Abies</i>) hosts. Mycologia, 2021, 113, 1-11.	1.9	3
12	Plant Trait Assembly in Species-Rich Forests at Varying Elevations in the Northwest Andes of Colombia. Land, 2021, 10, 1057.	2.9	3
13	Decelerated carbon cycling by ectomycorrhizal fungi is controlled by substrate quality and community composition. New Phytologist, 2020, 226, 569-582.	7.3	53
14	Functional convergence in the decomposition of fungal necromass in soil and wood. FEMS Microbiology Ecology, 2020, 96, .	2.7	24
15	Fungal functional ecology: bringing a traitâ€based approach to plantâ€associated fungi. Biological Reviews, 2020, 95, 409-433.	10.4	171
16	Climate and phylogenetic history structure morphological and architectural trait variation among fineâ€root orders. New Phytologist, 2020, 228, 1824-1834.	7.3	25
17	Does fungal competitive ability explain host specificity or rarity in ectomycorrhizal symbioses?. PLoS ONE, 2020, 15, e0234099.	2.5	6
18	Substrate quality drives fungal necromass decay and decomposer community structure under contrasting vegetation types. Journal of Ecology, 2020, 108, 1845-1859.	4.0	33

#	Article	IF	CITATIONS
19	Rapid changes in the chemical composition of degrading ectomycorrhizal fungal necromass. Fungal Ecology, 2020, 45, 100922.	1.6	16
20	Does fungal competitive ability explain host specificity or rarity in ectomycorrhizal symbioses?. , 2020, 15, e0234099.		0
21	Does fungal competitive ability explain host specificity or rarity in ectomycorrhizal symbioses?. , 2020, 15, e0234099.		0
22	Non-symbiotic soil microbes are more strongly influenced by altered tree biodiversity than arbuscular mycorrhizal fungi during initial forest establishment. FEMS Microbiology Ecology, 2019, 95, .	2.7	3
23	Global patterns in fine root decomposition: climate, chemistry, mycorrhizal association and woodiness. Ecology Letters, 2019, 22, 946-953.	6.4	110
24	Genomeâ€based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Molecular Ecology, 2019, 28, 721-730.	3.9	163
25	Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecology Letters, 2019, 22, 498-505.	6.4	73
26	The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 2019, 47, D259-D264.	14.5	2,072
27	Plant-mediated partner discrimination in ectomycorrhizal mutualisms. Mycorrhiza, 2019, 29, 97-111.	2.8	41
28	Probing promise versus performance in longer read fungal metabarcoding. New Phytologist, 2018, 217, 973-976.	7.3	24
29	Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. Journal of Ecology, 2018, 106, 468-479.	4.0	66
30	Ectomycorrhizal host specificity in a changing world: can legacy effects explain anomalous current associations?. New Phytologist, 2018, 220, 1273-1284.	7.3	34
31	Ecological responses to forest age, habitat, and host vary by mycorrhizal type in boreal peatlands. Mycorrhiza, 2018, 28, 315-328.	2.8	22
32	Host preference and network properties in biotrophic plant–fungal associations. New Phytologist, 2018, 217, 1230-1239.	7.3	107
33	Ecological and functional effects of fungal endophytes on wood decomposition. Functional Ecology, 2018, 32, 181-191.	3.6	48
34	The afterlife effects of fungal morphology: Contrasting decomposition rates between diffuse and rhizomorphic necromass. Soil Biology and Biochemistry, 2018, 126, 76-81.	8.8	21
35	Organic nitrogen addition suppresses fungal richness and alters community composition in temperate forest soils. Soil Biology and Biochemistry, 2018, 125, 222-230.	8.8	27
36	Colonization by nitrogen-fixing Frankia bacteria causes short-term increases in herbivore susceptibility in red alder (Alnus rubra) seedlings. Oecologia, 2017, 184, 497-506.	2.0	18

#	Article	IF	CITATIONS
37	Moving beyond <i>de novo</i> clustering in fungal community ecology. New Phytologist, 2017, 216, 629-634.	7.3	17
38	Fungal endophytes as priority colonizers initiating wood decomposition. Functional Ecology, 2017, 31, 407-418.	3.6	81
39	Ectomycorrhizal fungal response to warming is linked to poor host performance at the borealâ€ŧemperate ecotone. Global Change Biology, 2017, 23, 1598-1609.	9.5	100
40	Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a fieldâ€based tree experiment. Molecular Ecology, 2016, 25, 4032-4046.	3.9	95
41	Competitive avoidance not edaphic specialization drives vertical niche partitioning among sister species of ectomycorrhizal fungi. New Phytologist, 2016, 209, 1174-1183.	7.3	43
42	Revisiting the â€~Gadgil effect': do interguild fungal interactions control carbon cycling in forest soils?. New Phytologist, 2016, 209, 1382-1394.	7.3	328
43	Dimensions of biodiversity in the Earth mycobiome. Nature Reviews Microbiology, 2016, 14, 434-447.	28.6	477
44	Ectomycorrhizal Fungal Protein Degradation Ability Predicted by Soil Organic Nitrogen Availability. Applied and Environmental Microbiology, 2016, 82, 1391-1400.	3.1	19
45	FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 2016, 20, 241-248.	1.6	2,797
46	Phylogenetic assessment of global Suillus ITS sequences supports morphologically defined species and reveals synonymous and undescribed taxa. Mycologia, 2016, 108, 1216-1228.	1.9	22
47	Effort versus Reward: Preparing Samples for Fungal Community Characterization in High-Throughput Sequencing Surveys of Soils. PLoS ONE, 2015, 10, e0127234.	2.5	36
48	Moving beyond the blackâ€box: fungal traits, community structure, and carbon sequestration in forest soils. New Phytologist, 2015, 205, 1378-1380.	7.3	42
49	Parsing ecological signal from noise in next generation amplicon sequencing. New Phytologist, 2015, 205, 1389-1393.	7.3	272
50	Testing the coâ€invasion hypothesis: ectomycorrhizal fungal communities on <i>Alnus glutinosa</i> and <i>Salix fragilis</i> in New Zealand. Diversity and Distributions, 2015, 21, 268-278.	4.1	65
51	Interspecific Mycorrhizal Networks and Non-networking Hosts: Exploring the Ecology of the Host Genus Alnus. Ecological Studies, 2015, , 227-254.	1.2	27
52	A molecular and morphological analysis of the genus <i>Rhizopogon</i> subgenus <i>Villosuli</i> section <i>Villosuli</i> as a preface to ecological monitoring. Mycologia, 2014, 106, 353-361.	1.9	5
53	Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis. New Phytologist, 2014, 202, 287-296.	7.3	51
54	Unlocking environmental keys to host specificity: differential tolerance of acidity and nitrate byÂAlnus-associated ectomycorrhizal fungi. Fungal Ecology, 2014, 12, 52-61.	1.6	22

#	Article	IF	CITATIONS
55	Missing checkerboards? An absence of competitive signal in <i>Alnus</i> -associated ectomycorrhizal fungal communities. PeerJ, 2014, 2, e686.	2.0	14
56	New wrinkles in an old paradigm: neighborhood effects can modify the structure and specificity of <i>Alnus</i> -associated ectomycorrhizal fungal communities. FEMS Microbiology Ecology, 2013, 83, 767-777.	2.7	59
57	Biogeography of ectomycorrhizal fungi associated with alders (<i><scp>A</scp>lnus</i> spp.) in relation to biotic and abiotic variables at the global scale. New Phytologist, 2013, 198, 1239-1249.	7.3	191
58	Scaling up: examining the macroecology of ectomycorrhizal fungi. Molecular Ecology, 2012, 21, 4151-4154.	3.9	47
59	<i>Arbutus menziesii</i> (Ericaceae) facilitates regeneration dynamics in mixed evergreen forests by promoting mycorrhizal fungal diversity and host connectivity. American Journal of Botany, 2012, 99, 1691-1701.	1.7	44
60	Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation?. Fungal Ecology, 2011, 4, 233-240.	1.6	155
61	Colonization-Competition Tradeoffs as a Mechanism Driving Successional Dynamics in Ectomycorrhizal Fungal Communities. PLoS ONE, 2011, 6, e25126.	2.5	56
62	Ectomycorrhizal fungi in Mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns in phylogeography. Mycorrhiza, 2011, 21, 559-568.	2.8	77
63	Frankia and Alnus rubra Canopy Roots: An Assessment of Genetic Diversity, Propagule Availability, and Effects on Soil Nitrogen. Microbial Ecology, 2010, 59, 214-220.	2.8	10
64	Frankia bacteria in Alnus rubra forests: genetic diversity and determinants of assemblage structure. Plant and Soil, 2010, 335, 479-492.	3.7	21
65	Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytologist, 2010, 185, 529-542.	7.3	185
66	Ectomycorrhizal fungi and interspecific competition: species interactions, community structure, coexistence mechanisms, and future research directions. New Phytologist, 2010, 187, 895-910.	7.3	151
67	A molecular and phylogenetic analysis of the structure and specificity of Alnus rubra ectomycorrhizal assemblages. Fungal Ecology, 2010, 3, 195-204.	1.6	34
68	Root tip competition among ectomycorrhizal fungi: Are priority effects a rule or an exception?. Ecology, 2009, 90, 2098-2107.	3.2	225
69	Fungal Community Ecology: A Hybrid Beast with a Molecular Master. BioScience, 2008, 58, 799-810.	4.9	260
70	SUPPLY-SIDE ECOLOGY IN MANGROVES: DO PROPAGULE DISPERSAL AND SEEDLING ESTABLISHMENT EXPLAIN FOREST STRUCTURE?. Ecological Monographs, 2007, 77, 53-76.	5.4	113
71	A strong species?area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecology Letters, 2007, 10, 470-480.	6.4	329
72	Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance. Journal of Ecology, 2007, 95, 1338-1345.	4.0	77

#	Article	IF	CITATIONS
73	Different soil moisture conditions change the outcome of the ectomycorrhizal symbiosis between Rhizopogon species and Pinus muricata. Plant and Soil, 2007, 291, 155-165.	3.7	63
74	Nickel hyperaccumulation as an anti-herbivore trait: considering the role of tolerance to damage. Plant and Soil, 2007, 293, 189-195.	3.7	20
75	Determining the outcome of field-based competition between two Rhizopogon species using real-time PCR. Molecular Ecology, 2006, 16, 881-890.	3.9	53
76	Forest encroachment into a Californian grassland: examining the simultaneous effects of facilitation and competition on tree seedling recruitment. Oecologia, 2006, 148, 464-474.	2.0	36
77	Priority effects determine the outcome of ectomycorrhizal competition between two Rhizopogon species colonizing Pinus muricata seedlings. New Phytologist, 2005, 166, 631-638.	7.3	140