Jürgen Gross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8433126/publications.pdf

Version: 2024-02-01

		331670	395702
54	1,290	21	33
papers	citations	h-index	g-index
55	55	55	1238
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Phytopathogen Lures Its Insect Vector by Altering Host Plant Odor. Journal of Chemical Ecology, 2008, 34, 1045-1049.	1.8	118
2	Pathogen-induced Release of Plant Allomone Manipulates Vector Insect Behavior. Journal of Chemical Ecology, 2008, 34, 1518-1522.	1.8	118
3	Woundingâ€mediated gene expression and accelerated viviparous reproduction of the pea aphid <i>Acyrthosiphon pisum</i>). Insect Molecular Biology, 2008, 17, 711-716.	2.0	88
4	Chemically mediated multitrophic interactions in a plant-insect vector-phytoplasma system compared with a partially nonvector species. Agricultural and Forest Entomology, 2011, 13, 25-35.	1.3	54
5	An invader supported by a parasite: Mistletoe berries as a host for food and reproduction of Spotted Wing Drosophila in early spring. Journal of Pest Science, 2016, 89, 749-759.	3.7	50
6	Protected by Fumigants: Beetle Perfumes in Antimicrobial Defense. Journal of Chemical Ecology, 2008, 34, 179-188.	1.8	48
7	<i>Cacopsylla melanoneura</i> Has No Relevance as Vector of Apple Proliferation in Germany. Phytopathology, 2009, 99, 729-738.	2.2	48
8	Origin of the defensive secretion of the leaf beetle Chrysomela lapponica. Tetrahedron, 1997, 53, 9203-9212.	1.9	44
9	Antimicrobial activity of exocrine glandular secretion of Chrysomela larvae. Journal of Chemical Ecology, 2002, 28, 317-331.	1.8	43
10	Antimicrobial Activity of Exocrine Glandular Secretions, Hemolymph, and Larval Regurgitate of the Mustard Leaf BeetlePhaedon cochleariae. Journal of Invertebrate Pathology, 1998, 72, 296-303.	3.2	39
11	Cultivating alternative crops reduces crop losses due to African elephants. Journal of Pest Science, 2016, 89, 497-506.	3.7	35
12	TMAO and other organic osmolytes in the muscles of amphipods (Crustacea) from shallow and deep water of Lake Baikal. Comparative Biochemistry and Physiology Part A, Molecular & Emp; Integrative Physiology, 2005, 142, 58-64.	1.8	31
13	The importance of specialist natural enemies for Chrysomela lapponica in pioneering a new host plant. Ecological Entomology, 2004, 29, 584-593.	2.2	29
14	Unraveling the Host Plant Alternation of Cacopsylla pruni – Adults but Not Nymphs Can Survive on Conifers Due to Phloem/Xylem Composition. Frontiers in Plant Science, 2018, 9, 484.	3.6	29
15	Chemoecological studies of the exocrine glandular larval secretions of two chrysomelid species (Coleoptera):Phaedon cochleariae andChrysomela lapponica. Chemoecology, 1994, 5-6, 185-189.	1.1	28
16	The significance of bottom-up effects for host plant specialization inChrysomelaleaf beetles. Oikos, 2004, 105, 368-376.	2.7	27
17	First evidence of acoustic communication in the pear psyllid Cacopsylla pyri L. (Hemiptera: Psyllidae). Journal of Pest Science, 2015, 88, 87-95.	3.7	27
18	Apple Proliferation Phytoplasma Influences the Pattern of Plant Volatiles Emitted Depending on Pathogen Virulence. Frontiers in Ecology and Evolution, 2016, 3, .	2.2	27

#	Article	IF	CITATIONS
19	The potential of medicinal and aromatic plants (MAPs) to reduce crop damages by Asian Elephants () Tj ETQq1 1	0.784314	rgBT /Overlo
20	Drugs from bugs: the use of insects as a valuable source of transgenes with potential in modern plant protection strategies. Journal of Pest Science, 2005, 78, 187-191.	3.7	24
21	Thermal Adaptations of the Leaf BeetleChrysomela lapponica(Coleoptera: Chrysomelidae) to Different Climes of Central and Northern Europe. Environmental Entomology, 2004, 33, 799-806.	1.4	23
22	Waxy bloom on grape berry surface is one important factor for oviposition of European grapevine moths. Journal of Pest Science, 2018, 91, 1225-1239.	3.7	23
23	Psyllid Vectors. , 2019, , 53-78.		22
24	Physical factors influencing the oviposition behaviour of European grapevine moths <i>Lobesia botrana</i> and <i>Eupoecilia ambiguella</i> Journal of Applied Entomology, 2018, 142, 201-210.	1.8	20
25	Capturing Insect Vectors of Phytoplasmas. Methods in Molecular Biology, 2013, 938, 61-72.	0.9	19
26	A Well Protected Intruder: The Effective Antimicrobial Defense of the Invasive Ladybird Harmonia axyridis. Journal of Chemical Ecology, 2010, 36, 1180-1188.	1.8	17
27	Host plant preferences and detection of host plant volatiles of the migrating psyllid species Cacopsylla pruni, the vector of European Stone Fruit Yellows. Journal of Pest Science, 2020, 93, 461-475.	3.7	17
28	The phytopathogen â€ [~] Candidatus Phytoplasma maliâ€ [™] alters apple tree phloem composition and affects oviposition behavior of its vector Cacopsylla picta. Chemoecology, 2021, 31, 31-45.	1.1	16
29	Principles of IPM in Cultivated Crops and Implementation of Innovative Strategies for Sustainable Plant Protection., 2016,, 9-26.		14
30	Innovative control of psyllid vectors of European fruit tree phytoplasmas. Phytopathogenic Mollicutes, 2013, 3, 37.	0.1	14
31	Influence of Diet on Fecundity, Immune Defense and Content of 2-Isopropyl-3-Methoxypyrazine in Harmonia axyridis Pallas. Journal of Chemical Ecology, 2012, 38, 854-864.	1.8	13
32	Diversity and frequencies of methoxypyrazines in hemolymph of Harmonia axyridis and Coccinella septempunctata and their influence on the taste of wine. European Food Research and Technology, 2012, 234, 399-404.	3.3	13
33	Chemical Communication between Phytopathogens, Their Host Plants and Vector Insects and Eavesdropping by Natural Enemies. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	13
34	Specialized 16SrX phytoplasmas induce diverse morphological and physiological changes in their respective fruit crops. PLoS Pathogens, 2021, 17, e1009459.	4.7	12
35	Reproductive isolation between populations from Northern and Central Europe of the leaf beetle Chrysomela lapponica L Chemoecology, 2006, 16, 241-251.	1.1	11
36	Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion. Microbiological Research, 2015, 181, 93-104.	5.3	11

#	Article	IF	CITATIONS
37	Phloem Metabolites of Prunus Sp. Rather than Infection with Candidatus Phytoplasma Prunorum Influence Feeding Behavior of Cacopsylla pruni Nymphs. Journal of Chemical Ecology, 2020, 46, 756-770.	1.8	11
38	Interactions between phloem-restricted bacterial plant pathogens, their vector insects, host plants, and natural enemies, mediated by primary and secondary plant metabolites. Entomologia Generalis, 2022, 42, 185-215.	3.1	10
39	Biosynthesis of the Sex Pheromone Component (E,Z)-7,9-Dodecadienyl Acetate in the European Grapevine Moth, Lobesia botrana, Involving â^†11 Desaturation and an Elusive â^†7 Desaturase. Journal of Chemical Ecology, 2021, 47, 248-264.	1.8	8
40	Pathogenicity against hemipteran vector insects of a novel insect pathogenic fungus from Entomophthorales (Pandora sp. nov. inedit.) with potential for biological control. Journal of Invertebrate Pathology, 2021, 183, 107621.	3.2	8
41	The chemistry of multitrophic interactions in phytoplasma disease systems and advances in control of psyllid vectors with semiochemicals. Phytopathogenic Mollicutes, 2019, 9, 157.	0.1	8
42	Collection, Identification, and Statistical Analysis of Volatile Organic Compound Patterns Emitted by Phytoplasma Infected Plants. Methods in Molecular Biology, 2019, 1875, 333-343.	0.9	7
43	Tracking Short-Range Attraction and Oviposition of European Grapevine Moths Affected by Volatile Organic Compounds in a Four-Chamber Olfactometer. Insects, 2020, 11, 45.	2.2	7
44	Climate change risk to pheromone application in pest management. Die Naturwissenschaften, 2021, 108, 47.	1.6	7
45	Drugs for Bugs: The Potential of Infochemicals Mediating Insect–Plant–Microbe Interactions for Plant Protection and Medicine. , 2013, , 79-93.		6
46	Encapsulation of the psyllidâ€pathogenic fungus <i>Pandora</i> sp. nov. inedit. and experimental infection of target insects ¹ . Pest Management Science, 2022, 78, 991-999.	3.4	6
47	The role of competitors for Chrysomela lapponica, a north Eurasian willow pest, in pioneering a new host plant. Journal of Pest Science, 2007, 80, 139-143.	3.7	5
48	Volatiles of several grapevine cultivars emitted at different phenological stages linked to discriminatory ability of grapevine moths. Journal of Plant Diseases and Protection, 2019, 126, 115-127.	2.9	5
49	New challenges in pest science. Journal of Pest Science, 2006, 79, 1-2.	3.7	4
50	News from the Editor-in-Chief. Journal of Pest Science, 2008, 81, 1-2.	3.7	2
51	Smart nanotextiles for application in sustainable agriculture. , 2021, , 203-227.		2
52	Influence of ontogenetic and migration stage on feeding behavior of Cacopsylla picta on †Candidatus Phytoplasma mali†infected and non-infected apple plants. Journal of Insect Physiology, 2021, 131, 104229.	2.0	2
53	In memoriam of an exceptional entomologist. Journal of Applied Entomology, 2021, 145, 737-739.	1.8	1
54	Flower traits change in response to infection with †Candidatus Phytoplasma mali†in Nicotiana tabacum as model system. Phytopathogenic Mollicutes, 2019, 9, 129.	0.1	0