
Graeme Hewitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8432995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nature Communications, 2012, 3, 708.	12.8	693
2	Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature Communications, 2014, 5, 4172.	12.8	596
3	Mitochondria are required for proâ€ageing features of the senescent phenotype. EMBO Journal, 2016, 35, 724-742.	7.8	527
4	Lysosome-mediated processing of chromatin in senescence. Journal of Cell Biology, 2013, 202, 129-143.	5.2	413
5	Pandemic peak SARS-CoV-2 infection and seroconversion rates in London frontline health-care workers. Lancet, The, 2020, 396, e6-e7.	13.7	196
6	Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN. Molecular Cell, 2016, 64, 688-703.	9.7	189
7	PolÎ, inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nature Communications, 2021, 12, 3636.	12.8	159
8	Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence?. Longevity & Healthspan, 2014, 3, 1.	6.7	150
9	DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1124-L1137.	2.9	128
10	SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy, 2016, 12, 1917-1930.	9.1	120
11	Repair, Reuse, Recycle: The Expanding Role of Autophagy in Genome Maintenance. Trends in Cell Biology, 2017, 27, 340-351.	7.9	116
12	Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD. Molecular Cell, 2021, 81, 767-783.e11.	9.7	72
13	Targeting the nucleotide salvage factor DNPH1 sensitizes <i>BRCA</i> -deficient cells to PARP inhibitors. Science, 2021, 372, 156-165.	12.6	68
14	SLX4IP Antagonizes Promiscuous BLM Activity during ALT Maintenance. Molecular Cell, 2019, 76, 27-43.e11.	9.7	63
15	Mechanistic Insights into Autoinhibition of the Oncogenic Chromatin Remodeler ALC1. Molecular Cell, 2017, 68, 847-859.e7.	9.7	53
16	Autophagy and ageing: implications for age-related neurodegenerative diseases. Essays in Biochemistry, 2013, 55, 119-131.	4.7	45
17	mTORC1 activity is supported by spatial association with focal adhesions. Journal of Cell Biology, 2021, 220, .	5.2	41
18	RTEL1 Regulates G4/R-Loops to Avert Replication-Transcription Collisions. Cell Reports, 2020, 33, 108546.	6.4	38

GRAEME HEWITT

#	Article	IF	CITATIONS
19	Scalable and robust SARS-CoV-2 testing in an academic center. Nature Biotechnology, 2020, 38, 927-931.	17.5	32
20	Tackling PARP inhibitor resistance. Trends in Cancer, 2021, 7, 1102-1118.	7.4	23
21	Structure and dynamics of the chromatin remodeler ALC1 bound to a PARylated nucleosome. ELife, 2021, 10, .	6.0	21
22	Mechanistic Insights into Regulation of the ALC1 Remodeler by the Nucleosome Acidic Patch. Cell Reports, 2020, 33, 108529.	6.4	20
23	H3K4 methylation by SETD1A/BOD1L facilitates RIF1-dependent NHEJ. Molecular Cell, 2022, 82, 1924-1939.e10.	9.7	16
24	Cell Sorting of Young and Senescent Cells. Methods in Molecular Biology, 2013, 1048, 31-47.	0.9	12
25	Clinical outcomes of COVID-19 in long-term care facilities for people with epilepsy. Epilepsy and Behavior, 2021, 115, 107602.	1.7	11
26	Mechanisms of Cross-Talk between Intracellular Protein Degradation Pathways. , 2015, , 103-119.		0
27	RTEL Resolves G4/R-Loops to Avert Replication-Transcription Collisions. SSRN Electronic Journal, 0, , .	0.4	Ο