
Jorg Tatzelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8431/publications.pdf Version: 2024-02-01

LODC TATZELT

#	Article	IF	CITATIONS
1	Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation. Journal of Biological Chemistry, 2009, 284, 22938-22951.	3.4	355
2	Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science, 2016, 351, 173-176.	12.6	336
3	The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO Journal, 2008, 27, 336-349.	7.8	333
4	Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death and Differentiation, 2011, 18, 769-782.	11.2	273
5	The cellular prion protein mediates neurotoxic signalling of β-sheet-rich conformers independent of prion replication. EMBO Journal, 2011, 30, 2057-2070.	7.8	209
6	The E3 Ligase Parkin Maintains Mitochondrial Integrity by Increasing Linear Ubiquitination of NEMO. Molecular Cell, 2013, 49, 908-921.	9.7	183
7	Parkin Mediates Neuroprotection through Activation of IÂB Kinase/Nuclear Factor-ÂB Signaling. Journal of Neuroscience, 2007, 27, 1868-1878.	3.6	171
8	Intracellular re-routing of prion protein prevents propagation of PrPSc and delays onset of prion disease. EMBO Journal, 2001, 20, 3957-3966.	7.8	147
9	Differential effects of Sec61α-, Sec62- and Sec63-depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. Journal of Cell Science, 2012, 125, 1958-69.	2.0	135
10	Inactivation of Parkin by Oxidative Stress and C-terminal Truncations. Journal of Biological Chemistry, 2003, 278, 47199-47208.	3.4	125
11	Genes contributing to prion pathogenesis. Journal of General Virology, 2008, 89, 1777-1788.	2.9	116
12	Stress-protective signalling of prion protein is corrupted by scrapie prions. EMBO Journal, 2008, 27, 1974-1984.	7.8	106
13	Pathogenic mutations inactivate parkin by distinct mechanisms. Journal of Neurochemistry, 2005, 92, 114-122.	3.9	98
14	Association of Bcl-2 with Misfolded Prion Protein Is Linked to the Toxic Potential of Cytosolic PrP. Molecular Biology of the Cell, 2006, 17, 3356-3368.	2.1	86
15	The key role of solvent in condensation: Mapping water in liquid-liquid phase-separated FUS. Biophysical Journal, 2021, 120, 1266-1275.	0.5	71
16	The Novel Membrane Protein TMEM59 Modulates Complex Glycosylation, Cell Surface Expression, and Secretion of the Amyloid Precursor Protein. Journal of Biological Chemistry, 2010, 285, 20664-20674.	3.4	68
17	The N-terminus of the prion protein is a toxic effector regulated by the C-terminus. ELife, 2017, 6, .	6.0	68
18	Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration. Journal of Clinical Investigation, 2015, 125, 1873-1885.	8.2	67

#	Article	IF	CITATIONS
19	Systematic Identification of Antiprion Drugs by High-Throughput Screening Based on Scanning for Intensely Fluorescent Targets. Journal of Virology, 2005, 79, 7785-7791.	3.4	64
20	Green tea extracts interfere with the stressâ€protective activity of PrP ^C and the formation of PrP ^{Sc} . Journal of Neurochemistry, 2008, 107, 218-229.	3.9	64
21	A protein quality control pathway regulated by linear ubiquitination. EMBO Journal, 2019, 38, .	7.8	63
22	The C-terminal Globular Domain of the Prion Protein Is Necessary and Sufficient for Import into the Endoplasmic Reticulum. Journal of Biological Chemistry, 2004, 279, 5435-5443.	3.4	60
23	Geldanamycin Restores a Defective Heat Shock Responsein Vivo. Journal of Biological Chemistry, 2001, 276, 45160-45167.	3.4	59
24	Determinants of the in Vivo Folding of the Prion Protein. Journal of Biological Chemistry, 2003, 278, 14961-14970.	3.4	57
25	Semisynthetic Murine Prion Protein Equipped with a GPI Anchor Mimic Incorporates into Cellular Membranes. Chemistry and Biology, 2007, 14, 994-1006.	6.0	56
26	Inhibition of Complex Glycosylation Increases the Formation of PrP ^{sc} . Traffic, 2003, 4, 313-322.	2.7	54
27	Misfolding of the Prion Protein at the Plasma Membrane Induces Endocytosis, Intracellular Retention and Degradation. Traffic, 2004, 5, 426-436.	2.7	47
28	The RAB GTPase RAB18 modulates macroautophagy and proteostasis. Biochemical and Biophysical Research Communications, 2017, 486, 738-743.	2.1	47
29	Structural and mechanistic aspects influencing the ADAM10-mediated shedding of the prion protein. Molecular Neurodegeneration, 2018, 13, 18.	10.8	45
30	Aberrant Folding of Pathogenic Parkin Mutants. Journal of Biological Chemistry, 2008, 283, 13771-13779.	3.4	44
31	Parkin Is Protective against Proteotoxic Stress in a Transgenic Zebrafish Model. PLoS ONE, 2010, 5, e11783.	2.5	44
32	Post-translational Import of the Prion Protein into the Endoplasmic Reticulum Interferes with Cell Viability. Journal of Biological Chemistry, 2003, 278, 36139-36147.	3.4	41
33	Pathogenic Mutations Located in the Hydrophobic Core of the Prion Protein Interfere with Folding and Attachment of the Glycosylphosphatidylinositol Anchor. Journal of Biological Chemistry, 2005, 280, 9320-9329.	3.4	41
34	Structural Instability of the Prion Protein upon M205S/R Mutations Revealed by Molecular Dynamics Simulations. Biophysical Journal, 2006, 90, 3908-3918.	0.5	38
35	The Cellular Prion Protein: A Player in Immunological Quiescence. Frontiers in Immunology, 2015, 6, 450.	4.8	37
36	A Pathogenic PrP Mutation and Doppel Interfere with Polarized Sorting of the Prion Protein. Journal of Biological Chemistry, 2005, 280, 5137-5140.	3.4	35

#	Article	IF	CITATIONS
37	Structural features within the nascent chain regulate alternative targeting of secretory proteins to mitochondria. EMBO Journal, 2013, 32, 1036-1051.	7.8	34
38	GPI-anchor signal sequence influences PrPC sorting, shedding and signalling, and impacts on different pathomechanistic aspects of prion disease in mice. PLoS Pathogens, 2019, 15, e1007520.	4.7	34
39	Kinetics of Prion Protein Accumulation in the CNS of Mice with Experimental Scrapie. Journal of Neuropathology and Experimental Neurology, 1999, 58, 1244-1249.	1.7	33
40	Molecular basis of cerebral neurodegeneration in prion diseases. FEBS Journal, 2007, 274, 606-611.	4.7	33
41	A sensitive filter retention assay for the detection of PrPScand the screening of anti-prion compounds. FEBS Letters, 2001, 503, 41-45.	2.8	32
42	Neuroprotective and Neurotoxic Signaling by the Prion Protein. Topics in Current Chemistry, 2011, 305, 101-119.	4.0	31
43	Folding and misfolding of the prion protein in the secretory pathway. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2004, 11, 162-172.	3.0	29
44	Prion protein-related proteins from zebrafish are complex glycosylated and contain a glycosylphosphatidylinositol anchor. Biochemical and Biophysical Research Communications, 2006, 341, 218-224.	2.1	29
45	Prion Disease: A Tale of Folds and Strains. Brain Pathology, 2013, 23, 321-332.	4.1	28
46	The signal peptide plus a cluster of positive charges in prion protein dictate chaperone-mediated Sec61 channel gating. Biology Open, 2019, 8, .	1.2	27
47	Conserved Stress-protective Activity between Prion Protein and Shadoo. Journal of Biological Chemistry, 2011, 286, 8901-8908.	3.4	25
48	Anti-Prion Drug mPPlg5 Inhibits PrPC Conversion to PrPSc. PLoS ONE, 2013, 8, e55282.	2.5	25
49	Cellular Prion Protein Mediates Toxic Signaling of Amyloid Beta. Neurodegenerative Diseases, 2012, 10, 298-300.	1.4	24
50	Nanomedicine for prion disease treatment. Prion, 2013, 7, 198-202.	1.8	24
51	α-Helical Domains Promote Translocation of Intrinsically Disordered Polypeptides into the Endoplasmic Reticulum. Journal of Biological Chemistry, 2009, 284, 24384-24393.	3.4	22
52	Secretory pathway retention of mutant prion protein induces p38-MAPK activation and lethal disease in mice. Scientific Reports, 2016, 6, 24970.	3.3	22
53	Recombination between adenovirus type 12 DNA and a hamster preinsertion sequence in a cell-free system. Journal of Molecular Biology, 1992, 226, 117-126.	4.2	21
54	The polysaccharide scaffold of PrP 27-30 is a common compound of natural prions and consists of α-linked polyglucose. Biological Chemistry, 2005, 386, 1149-55.	2.5	21

#	Article	IF	CITATIONS
55	Protein immobilization on liposomes and lipidâ€coated nanoparticles by protein <i>trans</i> â€splicing. Journal of Peptide Science, 2010, 16, 582-588.	1.4	20
56	Alterations in the brain interactome of the intrinsically disordered N-terminal domain of the cellular prion protein (PrPC) in Alzheimer's disease. PLoS ONE, 2018, 13, e0197659.	2.5	20
57	The N-terminal domain of the prion protein is required and sufficient for liquid–liquid phase separation: A crucial role of the Aβ-binding domain. Journal of Biological Chemistry, 2021, 297, 100860.	3.4	19
58	Targeting of the prion protein to the cytosol: mechanisms and consequences. Current Issues in Molecular Biology, 2010, 12, 109-18.	2.4	19
59	Ligands binding to the prion protein induce its proteolytic release with therapeutic potential in neurodegenerative proteinopathies. Science Advances, 2021, 7, eabj1826.	10.3	18
60	Transgenic Overexpression of the Disordered Prion Protein N1 Fragment in Mice Does Not Protect Against Neurodegenerative Diseases Due to Impaired ER Translocation. Molecular Neurobiology, 2020, 57, 2812-2829.	4.0	17
61	Observing fibrillar assemblies on scrapie-infected cells. Pflugers Archiv European Journal of Physiology, 2008, 456, 83-93.	2.8	16
62	The Sec61/SecY complex is inherently deficient in translocating intrinsically disordered proteins. Journal of Biological Chemistry, 2017, 292, 21383-21396.	3.4	16
63	The <i>parkin-coregulated gene</i> product PACRG promotes TNF signaling by stabilizing LUBAC. Science Signaling, 2020, 13, .	3.6	16
64	Abnormalities in Stress Proteins in Prion Diseases. Cellular and Molecular Neurobiology, 1998, 18, 721-729.	3.3	14
65	The α-Helical Structure of Prodomains Promotes Translocation of Intrinsically Disordered Neuropeptide Hormones into the Endoplasmic Reticulum. Journal of Biological Chemistry, 2013, 288, 13961-13973.	3.4	14
66	The prion protein in neuroimmune crosstalk. Neurochemistry International, 2019, 130, 104335.	3.8	14
67	Dimerization of the cellular prion protein inhibits propagation of scrapie prions. Journal of Biological Chemistry, 2018, 293, 8020-8031.	3.4	13
68	Synthesis of a GPI anchor module suitable for protein postâ€ŧranslational modification. Biopolymers, 2010, 94, 457-464.	2.4	12
69	Remodeling of the Fibrillation Pathway of αâ€Synuclein by Interaction with Antimicrobial Peptide LLâ€III. Chemistry - A European Journal, 2021, 27, 11845-11851.	3.3	12
70	Bivalent metal ions induce formation of $\hat{I}\pm$ -synuclein fibril polymorphs with different cytotoxicities. Scientific Reports, 2022, 12, .	3.3	12
71	Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice. PLoS ONE, 2017, 12, e0188989.	2.5	11
72	The Heat Shock Response Is Modulated by and Interferes with Toxic Effects of Scrapie Prion Protein and Amyloid β. Journal of Biological Chemistry, 2012, 287, 43765-43776.	3.4	9

#	Article	IF	CITATIONS
73	Conditional Modulation of Membrane Protein Expression in Cultured Cells Mediated by Prion Protein Recognition of Short Phosphorothioate Oligodeoxynucleotides. Journal of Biological Chemistry, 2011, 286, 6911-6917.	3.4	6
74	Impaired transport of intrinsically disordered proteins through the Sec61 and SecY translocon; implications for prion diseases. Prion, 2018, 12, 88-92.	1.8	3
75	SecY-mediated quality control prevents the translocation of non-gated porins. Scientific Reports, 2020, 10, 16347.	3.3	2
76	The G127V variant of the prion protein interferes with dimer formation in vitro but not in cellulo. Scientific Reports, 2021, 11, 3116.	3.3	2
77	Biological Functions of the Intrinsically Disordered N-Terminal Domain of the Prion Protein: A Possible Role of Liquid–Liquid Phase Separation. Biomolecules, 2021, 11, 1201.	4.0	1
78	Inhibition of scrapie prion propagation. Gene Function & Disease, 2001, 2, 108-112.	0.3	0