Carmen Cuadrado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8430316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health. Phytochemistry Reviews, 2012, 11, 227-244.	6.5	156
2	The trypsin inhibitors present in seed of different grain legume species and cultivar. Food Chemistry, 2008, 107, 68-74.	8.2	145
3	The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chemistry, 2009, 114, 1063-1068.	8.2	141
4	Effects of Extrusion, Boiling, Autoclaving, and Microwave Heating on Lupine Allergenicity. Journal of Agricultural and Food Chemistry, 2005, 53, 1294-1298.	5.2	99
5	Heat and pressure treatments effects on peanut allergenicity. Food Chemistry, 2012, 132, 360-366.	8.2	93
6	The impact of extrusion on the nutritional composition, dietary fiber and in vitro digestibility of gluten-free snacks based on rice, pea and carob flour blends. Food and Function, 2017, 8, 3654-3663.	4.6	83
7	Changes in Nonnutritional Factors and Antioxidant Activity during Germination of Nonconventional Legumes. Journal of Agricultural and Food Chemistry, 2013, 61, 8120-8125.	5.2	79
8	Determination of phytate and lower inositol phosphates in Spanish legumes by HPLC methodology. Food Chemistry, 1995, 52, 321-325.	8.2	74
9	Determination of caffeic and chlorogenic acids and their derivatives in different sunflower seeds. , 2000, 80, 459-464.		73
10	Alkaloid variation during germination in different lupin species. Food Chemistry, 2005, 90, 347-355.	8.2	73
11	Variation of alkaloid components of lupin seeds in 49 genotypes of Lupinus albus from different countries and locations Journal of Agricultural and Food Chemistry, 1994, 42, 1447-1450.	5.2	72
12	Influence of thermal processing on IgE reactivity to lentil and chickpea proteins. Molecular Nutrition and Food Research, 2009, 53, 1462-1468.	3.3	66
13	Influence of Enzymatic Hydrolysis on the Allergenicity of Roasted Peanut Protein Extract. International Archives of Allergy and Immunology, 2012, 157, 41-50.	2.1	64
14	Variation of favism-inducing factors (vicine, convicine and L-DOPA) during pod development inVicia faba L Plant Foods for Human Nutrition, 1995, 47, 265-274.	3.2	61
15	Effect of instant controlled pressure drop on the oligosaccharides, inositol phosphates, trypsin inhibitors and lectins contents of different legumes. Food Chemistry, 2012, 131, 862-868.	8.2	61
16	Effect of germination on the oligosaccharide content of lupin species. Journal of Chromatography A, 1992, 607, 349-352.	3.7	58
17	Effects of industrial canning on the proximate composition, bioactive compounds contents and nutritional profile of two Spanish common dry beans (Phaseolus vulgaris L.). Food Chemistry, 2015, 166, 68-75.	8.2	58
18	Effect of Germination, under Different Environmental Conditions, on Saponins, Phytic Acid and Tannins in Lentils (Lens culinaris). Journal of the Science of Food and Agriculture, 1997, 74, 273-279.	3.5	56

#	Article	IF	CITATIONS
19	Effect of Roasting and Boiling on the Content of Vicine, Convicine and <scp>L</scp> â€3,4â€dihydroxyphenylalanine in <i><scp>V</scp>icia faba</i> <scp>L</scp> Journal of Food Quality, 2012, 35, 419-428.	2.6	53
20	Novel approaches in anthocyanin research - Plant fortification and bioavailability issues. Trends in Food Science and Technology, 2021, 117, 92-105.	15.1	50
21	Content and distribution of vicine, convicine and l-DOPA during germination and seedling growth of two Vicia faba L. varieties. European Food Research and Technology, 2008, 227, 1537-1542.	3.3	49
22	Allergenic properties and differential response of walnut subjected to processing treatments. Food Chemistry, 2014, 157, 141-147.	8.2	49
23	Effect of soaking, cooking and germination on the oligosaccharide content of selected Nigerian legume seeds. Plant Foods for Human Nutrition, 2000, 55, 97-110.	3.2	48
24	Characterization of lupin major allergens (<i>Lupinus albus</i> L.). Molecular Nutrition and Food Research, 2010, 54, 1668-1676.	3.3	47
25	Novel fiber-rich lentil flours as snack-type functional foods: an extrusion cooking effect on bioactive compounds. Food and Function, 2015, 6, 3135-3143.	4.6	47
26	Evaluation of antinutritional factors of selected varieties ofPhaseolus vulgaris. , 1999, 79, 1468-1472.		46
27	The effect of extrusion on the bioactive compounds and antioxidant capacity of novel gluten-free expanded products based on carob fruit, pea and rice blends. Innovative Food Science and Emerging Technologies, 2019, 52, 100-107.	5.6	46
28	Composition of two Spanish common dry beans (<i>Phaseolus vulgaris)</i> , â€~Almonga' and ‰Curruquilla', and their postprandial effect in type 2 diabetics. Journal of the Science of Food and Agriculture, 2013, 93, 1076-1082.	3.5	42
29	Potential changes in the allergenicity of three forms of peanut after thermal processing. Food Chemistry, 2015, 183, 18-25.	8.2	41
30	Effects of enzymatic hydrolysis on lentil allergenicity. Molecular Nutrition and Food Research, 2010, 54, 1266-1272.	3.3	40
31	Real Time PCR to detect hazelnut allergen coding sequences in processed foods. Food Chemistry, 2013, 138, 1976-1981.	8.2	40
32	Alkaloid, α-galactoside and phytic acid changes in germinating lupin seeds. Journal of the Science of Food and Agriculture, 1994, 66, 357-364.	3.5	39
33	Purification and Characterization of a Phytate-Degrading Enzyme from Germinated Faba Beans (Vicia) Tj ETQq1	1 0,78431 5.2	4 rgBT /Over
34	The synaptic behaviour of Triticum turgidum with variable doses of the Ph1 locus. Theoretical and Applied Genetics, 2001, 102, 751-758.	3.6	39
35	Occurrence of saponins and sapogenols in Andean crops. Journal of the Science of Food and Agriculture, 1995, 67, 169-172.	3.5	38
36	Content and distribution of protein, sugars and inositol phosphates during the germination and seedling growth of two cultivars of Vicia faba. Journal of Food Composition and Analysis, 2011, 24, 391-397.	3.9	38

#	Article	IF	CITATIONS
37	Anti-nutritional constituents of six underutilized legumes grown in Nigeria. Journal of Chromatography A, 1998, 823, 307-312.	3.7	37
38	Extrusion effect on proximate composition, starch and dietary fibre of ready-to-eat products based on rice fortified with carob fruit and bean. LWT - Food Science and Technology, 2019, 111, 387-393.	5.2	37
39	Effect of Natural Fermentation on the Lectin of Lentils Measured by Immunological Methods. Food and Agricultural Immunology, 2002, 14, 41-49.	1.4	35
40	Detection by real time PCR of walnut allergen coding sequences in processed foods. Food Chemistry, 2016, 202, 334-340.	8.2	35
41	Novel gluten-free formulations from lentil flours and nutritional yeast: Evaluation of extrusion effect on phytochemicals and non-nutritional factors. Food Chemistry, 2020, 315, 126175.	8.2	35
42	Pathway of Dephosphorylation ofmyo-Inositol Hexakisphosphate by Phytases of Legume Seeds. Journal of Agricultural and Food Chemistry, 2002, 50, 6865-6870.	5.2	34
43	Effect of Instant Controlled Pressure Drop on IgE Antibody Reactivity to Peanut, Lentil, Chickpea and Soybean Proteins. International Archives of Allergy and Immunology, 2011, 156, 397-404.	2.1	33
44	Influence of enzymatic hydrolysis on the allergenic reactivity of processed cashew and pistachio. Food Chemistry, 2018, 241, 372-379.	8.2	33
45	Effect of an Instantaneous Controlled Pressure Drop on in vitro Allergenicity to Lupins <i>(Lupinus) Tj ETQq1 1</i>	0.784314 i 2.1	rgB ₃₂ /Overloc
46	Thermal processing effects on the IgE-reactivity of cashew and pistachio. Food Chemistry, 2018, 245, 595-602.	8.2	32
47	Application of real-time PCR for tree nut allergen detection in processed foods. Critical Reviews in Food Science and Nutrition, 2020, 60, 1077-1093.	10.3	30
48	Boiling and Pressure Cooking Impact on IgE Reactivity of Soybean Allergens. International Archives of Allergy and Immunology, 2018, 175, 36-43.	2.1	28
49	Chemical Composition and Antinutrient Content of three Lupinus Species from Jalisco, Mexico. Journal of Food Composition and Analysis, 2000, 13, 193-199.	3.9	26
50	Bioactive Compounds, Antioxidant Activity, and Sensory Analysis of Rice-Based Extruded Snacks-Like Fortified with Bean and Carob Fruit Flours. Foods, 2019, 8, 381.	4.3	26
51	High apparent ileal digestibility of amino acids in raw and germinated faba bean (Vicia faba)- and chickpea (Cicer arietinum)-based diets for rats. Journal of the Science of Food and Agriculture, 2002, 82, 1710-1717.	3.5	24
52	Detection of Almond Allergen Coding Sequences in Processed Foods by Real Time PCR. Journal of Agricultural and Food Chemistry, 2014, 62, 5617-5624.	5.2	24
53	Cooking Effect on the Bioactive Compounds, Texture, and Color Properties of Cold-Extruded Rice/Bean-Based Pasta Supplemented with Whole Carob Fruit. Foods, 2020, 9, 415.	4.3	24
54	Herbicide-like effect of Lupinus alkaloids. Industrial Crops and Products, 1994, 2, 273-280.	5.2	22

#	Article	IF	CITATIONS
55	Further insights on chromosomal pairing of autopolyploids: a triploid and tetraploids of rye. Chromosoma, 1995, 104, 298-307.	2.2	22
56	Evaluation ofLupinusSpecies to Accumulate Heavy Metals From W aste Waters. International Journal of Phytoremediation, 2001, 3, 369-379.	3.1	22
57	Synaptic behaviour of hexaploid wheat haploids with different effectiveness of the diploidizing mechanism. Cytogenetic and Genome Research, 2005, 109, 210-214.	1.1	22
58	Influence of malting on selected components of soya bean, black bean, chickpea and barley. Food Chemistry, 1999, 65, 85-90.	8.2	21
59	Effects of autoclaving and high pressure on allergenicity of hazelnut proteins. Journal of Clinical Bioinformatics, 2012, 2, 12.	1.2	21
60	Synaptic behaviour of the tetraploid wheat Triticum timopheevii. Theoretical and Applied Genetics, 1996, 93, 1139-1144.	3.6	20
61	Nutritional Utilization by the Rat of Diets Based on Lentil (Lens culinaris) Seed Meal or Its Fractions. Journal of Agricultural and Food Chemistry, 2002, 50, 4371-4376.	5.2	20
62	Changes Induced by Pressure Processing on Immunoreactive Proteins of Tree Nuts. Molecules, 2020, 25, 954.	3.8	20
63	lleal digestibility of defatted soybean, lupin and chickpea seed meals in cannulated Iberian pigs: II. Fatty acids and carbohydrates. Journal of the Science of Food and Agriculture, 2005, 85, 1322-1328.	3.5	19
64	Amperometric determination of hazelnut traces by means of Express PCR coupled to magnetic beads assembled on disposable DNA sensing scaffolds. Sensors and Actuators B: Chemical, 2017, 245, 895-902.	7.8	19
65	Influence of boiling and autoclave processing on the phenolic content, antioxidant activity and functional properties of pistachio, cashew and chestnut flours. LWT - Food Science and Technology, 2019, 105, 250-256.	5.2	19
66	Chemical Composition and Fatty Acid Profile of Several Mexican Wild Lupins. Journal of Food Composition and Analysis, 2001, 14, 645-651.	3.9	18
67	A Novel Proteomic Analysis of the Modifications Induced by High Hydrostatic Pressure on Hazelnut Water-Soluble Proteins. Foods, 2014, 3, 279-289.	4.3	18
68	Determination of <i>βâ€N</i> â€oxalylâ€ <scp>l</scp> â€ <i>α</i> , <i>β</i> â€diaminopropionic acid and homoarg inÂ <i>Lathyrus sativus</i> and <i>Lathyrus cicera</i> by capillary zone electrophoresis. Journal of the Science of Food and Agriculture, 2015, 95, 1414-1420.	inine 3.5	17
69	Detection of pistachio allergen coding sequences in food products: A comparison of two real time PCR approaches. Food Control, 2017, 75, 262-270.	5.5	17
70	LENS CULINARIS, PHASEOLUS VULGARIS AND VICIA FABA LECTINS SPECIFICALLY TRIGGER IL-8 PRODUCTION BY THE HUMAN COLON CARCINOMA CELL LINE CACO-2. Cytokine, 2000, 12, 1284-1287.	3.2	16
71	Study of the effect of instant controlled pressure drop (DIC) treatment on IgE-reactive legume-protein patterns by electrophoresis and immunoblot. Food and Agricultural Immunology, 2014, 25, 173-185.	1.4	16
72	Effect of natural fermentation on the content of inositol phosphates in lentils. European Food Research and Technology, 1996, 203, 268-271.	0.6	15

#	Article	IF	CITATIONS
73	Breadmaking properties of wheat flour supplemented with thermally processed hypoallergenic lupine flour. Spanish Journal of Agricultural Research, 2010, 8, 100.	0.6	15
74	Determinación de saponinas en las principales leguminosas cultivadas en España/Determination of saponins in the main legumes cultivated in Spain. Food Science and Technology International, 1996, 2, 95-100.	2.2	14
75	The effect of germination on seed trypsin inhibitors inVicia faba andCicer arietinum. Journal of the Science of Food and Agriculture, 2004, 84, 556-560.	3.5	14
76	Detection of Peanut Allergen by Real-Time PCR: Looking for a Suitable Detection Marker as Affected by Processing. Foods, 2021, 10, 1421.	4.3	14
77	Variation in the alkaloid content of different subspecies of Chamaecytisus proliferus from the Canary Islands. Journal of Chromatography A, 1996, 719, 237-243.	3.7	12
78	Recovery at the terminal ileum of some legume non-nutritional factors in cannulated pigs. Journal of the Science of Food and Agriculture, 2006, 86, 979-987.	3.5	12
79	Evaluation of locked nucleic acid and TaqMan probes for specific detection of cashew nut in processed food by real time PCR. Food Control, 2018, 89, 227-234.	5.5	12
80	Biochemical characterization of legume seeds as ingredients in animal feed. Spanish Journal of Agricultural Research, 2016, 14, e0901.	0.6	12
81	Interaction between different genotypes of allogamous and autogamous rye and the homoeologous pairing control of wheat. Heredity, 1984, 52, 323-330.	2.6	11
82	Influence of Instant Controlled Pressure Drop (DIC) on Allergenic Potential of Tree Nuts. Molecules, 2020, 25, 1742.	3.8	10
83	Nut Allergenicity: Effect of Food Processing. Allergies, 2021, 1, 150-162.	0.8	9
84	Meiotic pairing control in wheat–rye hybrids. I. Effect of different wheat chromosome arms of homoeologous groups 3 and 5. Genome, 1991, 34, 72-75.	2.0	8
85	Chemical composition of a new Lupinus species found in Spain, Lupinus mariae-josephi H. Pascual (Fabaceae). Spanish Journal of Agricultural Research, 2011, 9, 1233.	0.6	8
86	Chestnut allergen detection in complex food products: Development and validation of a real-time PCR method. LWT - Food Science and Technology, 2020, 123, 109067.	5.2	7
87	Epitope mapping of the major allergen 2S albumin from pine nut. Food Chemistry, 2021, 339, 127895.	8.2	7
88	Identification of high-affinity phage-displayed VH fragments by use of a quartz crystal microbalance with dissipation monitoring. Sensors and Actuators B: Chemical, 2021, 340, 129954.	7.8	6
89	Influence of germination on lectin in Lens culinaris seeds. Acta Alimentaria, 2000, 29, 231-240.	0.7	5
90	The synaptic behaviour of the wild forms of Triticum turgidum and T. timopheevii. Genome, 2001, 44, 517-522.	2.0	5

#	Article	IF	CITATIONS
91	Interaction of Monocyte-Derived Dendritic Cells with Ara h 2 from Raw and Roasted Peanuts. Foods, 2020, 9, 863.	4.3	5
92	CHAPTER 7. Non-nutritional Factors: Lectins, Phytic Acid, Proteases Inhibitors, Allergens. Food Chemistry, Function and Analysis, 2019, , 152-176.	0.2	5
93	Odd-even effect of rye B-chromosomes on homoeologous pairing in wheat-rye hybrids. Caryologia, 1993, 46, 17-23.	0.3	4
94	Synaptic abnormalities in spread nuclei of Secale. I. Inbred lines. Genome, 1995, 38, 764-771.	2.0	4
95	Uncovered reactivity to lupine in lentil-allergic patients. Annals of Allergy, Asthma and Immunology, 2010, 105, 94-96.	1.0	4
96	Synaptic behaviour of the tetraploid wheat Triticum timopheevii. Theoretical and Applied Genetics, 1996, 93, 1139-1144.	3.6	4
97	Effects of Autoclaving on Allergenicity of Roasted Peanut. Journal of Allergy and Clinical Immunology, 2009, 123, S31-S31.	2.9	3
98	The synaptic behaviour of the wild forms of <i>Triticum turgidum</i> and <i>T. timopheevii</i> . Genome, 2001, 44, 517-522.	2.0	3
99	Meiotic pairing control in wheat–rye hybrids. II. Effect of rye genome and rye B-chromosomes and interaction with the wheat genetic system. Genome, 1991, 34, 76-80.	2.0	2
100	Effects of Enzymatic Hydrolysis on Peanut Allergenicity. Journal of Allergy and Clinical Immunology, 2010, 125, AB224.	2.9	2
101	New Research in Food Allergen Detection. Foods, 2022, 11, 1520.	4.3	2
102	Synaptic abnormalities in spread nuclei of <i>Secale</i> . II. <i>Secale vavilovii</i> . Genome, 1995, 38, 772-779.	2.0	1
103	Differences in the synaptic pattern in two autotetraploid cultivars of rye with different quadrivalent frequencies at metaphase I. Genome, 1999, 42, 662-667.	2.0	1
104	Effect of Instant Controlled Pressure Drop (DIC) Treatment on the Detection of Nut Allergens by Real Time PCR. Foods, 2020, 9, 729.	4.3	1
105	Effect of local food processing on the inositol phosphate contents in lima bean(Phaseolus lunatus) Tj ETQq1 1 0.	784314 rş 1.6	gBT /Overlock 0
106	EFFECT OF LOCAL FOOD PROCESSING ON THE INOSITOL PHOSPHATE CONTENTS IN LIMA BEAN (PHASEOLUS) T JACKBEAN (CANAVALIA ENSIFORMIS). Ecology of Food and Nutrition, 2002, 41, 229-242.	[j ETQq0 (1.6) 0 rgBT /Ove 0
107	Effect of DIC on the Allergenicity of Legume Proteins. Food Engineering Series, 2014, , 69-82.	0.7	0
108	Differences in the synaptic pattern in two autotetraploid cultivars of rye with different quadrivalent frequencies at metaphase I. Genome, 1999, 42, 662-667.	2.0	0