Huilin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8430026/publications.pdf

Version: 2024-02-01

30	7,499	20	26
papers	citations	h-index	g-index
33	33	33	6139 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 2018, 20, 285-295.	10.3	1,650
2	FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6 -Methyladenosine RNA Demethylase. Cancer Cell, 2017, 31, 127-141.	16.8	1,139
3	R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling. Cell, 2018, 172, 90-105.e23.	28.9	794
4	METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell, 2018, 22, 191-205.e9.	11.1	749
5	m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell, 2020, 37, 270-288.	16.8	688
6	RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Research, 2018, 28, 507-517.	12.0	586
7	Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature, 2019, 567, 414-419.	27.8	452
8	Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. Cancer Cell, 2020, 38, 79-96.e11.	16.8	389
9	IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Research, 2019, 47, 375-390.	14.5	256
10	RNA Demethylase ALKBH5 Selectively Promotes Tumorigenesis and Cancer Stem Cell Self-Renewal in Acute Myeloid Leukemia. Cell Stem Cell, 2020, 27, 64-80.e9.	11.1	225
11	The Biogenesis and Precise Control of RNA m6A Methylation. Trends in Genetics, 2020, 36, 44-52.	6.7	198
12	RNA Modifications in Cancer: Functions, Mechanisms, and Therapeutic Implications. Annual Review of Cancer Biology, 2020, 4, 221-240.	4.5	60
13	N(6)â€methyladenosineâ€binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Reports, 2021, 22, e50128.	4.5	59
14	Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nature Communications, 2017, 8, 2099.	12.8	45
15	Homoharringtonine exhibits potent anti-tumor effect and modulates DNA epigenome in acute myeloid leukemia by targeting SP1/TET1/5hmC. Haematologica, 2020, 105, 148-160.	3 . 5	41
16	RNA N 6-Methyladenosine Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2019, 1143, 75-93.	1.6	35
17	ALOX5 exhibits anti-tumor and drug-sensitizing effects in MLL-rearranged leukemia. Scientific Reports, 2017, 7, 1853.	3.3	26
18	N ⁶ â€methyladenosine Steers RNA Metabolism and Regulation in Cancer. Cancer Communications, 2021, 41, 538-559.	9.2	24

#	Article	IF	CITATIONS
19	miR-550-1 functions as a tumor suppressor in acute myeloid leukemia via the hippo signaling pathway. International Journal of Biological Sciences, 2020, 16, 2853-2867.	6.4	11
20	Structural and functional characterization of multiple myeloma associated cytoplasmic poly(A) polymerase FAM46C. Cancer Communications, 2021, 41, 615-630.	9.2	7
21	Fto Plays an Oncogenic Role in Acute Myeloid Leukemia As a N6-Methyladenosine RNA Demethylase. Blood, 2016, 128, 2706-2706.	1.4	5
22	The N6-Adenine Methyltransferase METTL14 Plays an Oncogenic Role in Acute Myeloid Leukemia. Blood, 2016, 128, 1536-1536.	1.4	1
23	Targeted Inhibition of STAT/TET1 Axis As a Potent Therapeutic Strategy for Acute Myeloid Leukemia. Blood, 2017, 130, 857-857.	1.4	1
24	Uncover TET1 Targets in MLL -Rearranged Leukemia. Blood, 2015, 126, 3632-3632.	1.4	0
25	Mircrorna-550 Functions As a Critical Tumor Suppressor in Acute Myeloid Leukemia. Blood, 2015, 126, 1240-1240.	1.4	O
26	TET1 Regulates DNA Replication through Targeting of Minichromosome Maintenance Genes. Blood, 2016, 128, 2687-2687.	1.4	0
27	Alox5 Functions As Both Tumor Suppressor and Drug Sensitizer in AML. Blood, 2016, 128, 2851-2851.	1.4	O
28	N6-Methyladenosine Modification Regulates Cell Metabolism in Acute Myeloid Leukemia. Blood, 2018, 132, 880-880.	1.4	0
29	ALKBH5 Functions As an Oncogene in Acute Myeloid Leukemia. Blood, 2018, 132, 3910-3910.	1.4	O
30	TET1 Modulates DNA Replication in Leukemia Cells Via a Catalytic-Independent Mechanism through Cooperating with KAT8. Blood, 2019, 134, 1249-1249.	1.4	0