
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8429861/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Spatiotemporal analysis identifies ABF2 and ABF3 as key hubs of endodermal response to nitrate.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                               | 3.3 | 17        |
| 2  | GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways. Journal of Experimental Botany, 2021, 72, 3881-3901.                                                  | 2.4 | 27        |
| 3  | Time-Based Systems Biology Approaches to Capture and Model Dynamic Gene Regulatory Networks.<br>Annual Review of Plant Biology, 2021, 72, 105-131.                                                                             | 8.6 | 16        |
| 4  | ConnecTF: A platform to integrate transcription factor–gene interactions and validate regulatory networks. Plant Physiology, 2021, 185, 49-66.                                                                                 | 2.3 | 27        |
| 5  | Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships. Nature Communications, 2021, 12, 5627.                                                                              | 5.8 | 48        |
| 6  | Plant ecological genomics at the limits of life in the Atacama Desert. Proceedings of the National<br>Academy of Sciences of the United States of America, 2021, 118, .                                                        | 3.3 | 35        |
| 7  | The biology of time: dynamic responses of cell types to developmental, circadian, and environmental cues. Plant Journal, 2021, , .                                                                                             | 2.8 | 8         |
| 8  | Current status of the multinational Arabidopsis community. Plant Direct, 2020, 4, e00248.                                                                                                                                      | 0.8 | 13        |
| 9  | Nutrient dose-responsive transcriptome changes driven by Michaelis–Menten kinetics underlie plant<br>growth rates. Proceedings of the National Academy of Sciences of the United States of America, 2020,<br>117, 12531-12540. | 3.3 | 38        |
| 10 | Nitrate in 2020: Thirty Years from Transport to Signaling Networks. Plant Cell, 2020, 32, 2094-2119.                                                                                                                           | 3.1 | 203       |
| 11 | Transient genome-wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade. Nature Communications, 2020, 11, 1157.                                                                  | 5.8 | 99        |
| 12 | A balancing act: how plants integrate nitrogen and water signals. Journal of Experimental Botany, 2020, 71, 4442-4451.                                                                                                         | 2.4 | 53        |
| 13 | SDG8-Mediated Histone Methylation and RNA Processing Function in the Response to Nitrate Signaling.<br>Plant Physiology, 2020, 182, 215-227.                                                                                   | 2.3 | 30        |
| 14 | OutPredict: multiple datasets can improve prediction of expression and inference of causality.<br>Scientific Reports, 2020, 10, 6804.                                                                                          | 1.6 | 13        |
| 15 | Arabidopsis SDC8 Potentiates the Sustainable Transcriptional Induction of the Pathogenesis-Related<br>Genes PR1 and PR2 During Plant Defense Response. Frontiers in Plant Science, 2020, 11, 277.                              | 1.7 | 36        |
| 16 | WRKY1 Mediates Transcriptional Regulation of Light and Nitrogen Signaling Pathways. Plant<br>Physiology, 2019, 181, 1371-1388.                                                                                                 | 2.3 | 22        |
| 17 | iPlant Systems Biology (iPSB): An International Network Hub in the Plant Community. Molecular Plant, 2019, 12, 727-730.                                                                                                        | 3.9 | 5         |
| 18 | Water impacts nutrient dose responses genome-wide to affect crop production. Nature Communications, 2019, 10, 1374.                                                                                                            | 5.8 | 19        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Network Walking charts transcriptional dynamics of nitrogen signaling by integrating validated and predicted genome-wide interactions. Nature Communications, 2019, 10, 1569.                                               | 5.8 | 92        |
| 20 | The 4th Dimension of Transcriptional Networks: TIME. FASEB Journal, 2019, 33, 343.1.                                                                                                                                        | 0.2 | 0         |
| 21 | μChIP-Seq for Genome-Wide Mapping of In Vivo TF-DNA Interactions in Arabidopsis Root Protoplasts.<br>Methods in Molecular Biology, 2018, 1761, 249-261.                                                                     | 0.4 | 11        |
| 22 | Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and<br>use in plants. Proceedings of the National Academy of Sciences of the United States of America, 2018,<br>115, 6494-6499. | 3.3 | 150       |
| 23 | Changes in Gene Expression in Space and Time Orchestrate Environmentally Mediated Shaping of Root<br>Architecture. Plant Cell, 2017, 29, 2393-2412.                                                                         | 3.1 | 49        |
| 24 | A matter of time — How transient transcription factor interactions create dynamic gene regulatory<br>networks. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 75-83.                               | 0.9 | 58        |
| 25 | Nitrate Transport, Sensing, and Responses in Plants. Molecular Plant, 2016, 9, 837-856.                                                                                                                                     | 3.9 | 427       |
| 26 | Longâ€distance nitrate signaling displays cytokinin dependent and independent branches. Journal of<br>Integrative Plant Biology, 2016, 58, 226-229.                                                                         | 4.1 | 57        |
| 27 | Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the <i>Arabidopsis thaliana</i> root. Science Signaling, 2016, 9, rs13.                                            | 1.6 | 81        |
| 28 | "Hit-and-Run―transcription: de novo transcription initiated by a transient bZIP1 "hit―persists after<br>the "run― BMC Genomics, 2016, 17, 92.                                                                               | 1.2 | 22        |
| 29 | Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice Â.<br>Plant Physiology, 2015, 168, 1830-1843.                                                                                  | 2.3 | 50        |
| 30 | "Hitâ€andâ€Run―leaves its mark: Catalyst transcription factors and chromatin modification. BioEssays,<br>2015, 37, 851-856.                                                                                                 | 1.2 | 20        |
| 31 | The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. Genome Biology, 2015, 16, 79.                                                                       | 3.8 | 91        |
| 32 | AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nature Communications, 2015, 6, 6274.                                                                                                    | 5.8 | 195       |
| 33 | From milliseconds to lifetimes: tracking the dynamic behavior of transcription factors in gene networks. Trends in Genetics, 2015, 31, 509-515.                                                                             | 2.9 | 26        |
| 34 | Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in <i>Arabidopsis</i> .<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10371-10376.          | 3.3 | 154       |
| 35 | Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome<br>Evolution. PLoS Genetics, 2014, 10, e1004487.                                                                                     | 1.5 | 229       |
| 36 | A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants.<br>Trends in Plant Science, 2014, 19, 5-9.                                                                                    | 4.3 | 581       |

| #  | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Finding a nitrogen niche: a systems integration of local and systemic nitrogen signalling in plants.<br>Journal of Experimental Botany, 2014, 65, 5601-5610.                                                                                                                    | 2.4  | 36        |
| 38 | TARGET: A Transient Transformation System for Genome-Wide Transcription Factor Target Discovery.<br>Molecular Plant, 2013, 6, 978-980.                                                                                                                                          | 3.9  | 73        |
| 39 | Gene regulatory networks in plants: learning causality from time and perturbation. Genome Biology, 2013, 14, 123.                                                                                                                                                               | 3.8  | 115       |
| 40 | RootScape: A Landmark-Based System for Rapid Screening of Root Architecture in Arabidopsis  Â. Plant<br>Physiology, 2013, 161, 1086-1096.                                                                                                                                       | 2.3  | 59        |
| 41 | Plasticity Regulators Modulate Specific Root Traits in Discrete Nitrogen Environments. PLoS Genetics, 2013, 9, e1003760.                                                                                                                                                        | 1.5  | 76        |
| 42 | Integration of responses within and across <i>Arabidopsis</i> natural accessions uncovers loci controlling root systems architecture. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15133-15138.                                  | 3.3  | 93        |
| 43 | Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots. BMC Genomics, 2013, 14, 701.                                                                                                                                  | 1.2  | 76        |
| 44 | A framework integrating plant growth with hormones and nutrients. Trends in Plant Science, 2011, 16, 178-182.                                                                                                                                                                   | 4.3  | 255       |
| 45 | Nitrogen economics of root foraging: Transitive closure of the nitrate–cytokinin relay and distinct<br>systemic signaling for N supply vs. demand. Proceedings of the National Academy of Sciences of the<br>United States of America, 2011, 108, 18524-18529.                  | 3.3  | 333       |
| 46 | HIGH NITROGEN INSENSITIVE 9 (HNI9)-mediated systemic repression of root NO <sub>3</sub><br><sup>â^²</sup> uptake is associated with changes in histone methylation. Proceedings of the National<br>Academy of Sciences of the United States of America, 2011, 108, 13329-13334. | 3.3  | 108       |
| 47 | A Functional Phylogenomic View of the Seed Plants. PLoS Genetics, 2011, 7, e1002411.                                                                                                                                                                                            | 1.5  | 134       |
| 48 | Using Phylogenomic Patterns and Gene Ontology to Identify Proteins of Importance in Plant<br>Evolution. Genome Biology and Evolution, 2010, 2, 225-239.                                                                                                                         | 1.1  | 27        |
| 49 | Nitrate signaling: adaptation to fluctuating environments. Current Opinion in Plant Biology, 2010, 13, 265-272.                                                                                                                                                                 | 3.5  | 319       |
| 50 | Modeling the global effect of the basic-leucine zipper transcription factor 1 (bZIP1) on nitrogen and light regulation in Arabidopsis. BMC Systems Biology, 2010, 4, 111.                                                                                                       | 3.0  | 69        |
| 51 | A Systems View of Responses to Nutritional Cues in Arabidopsis: Toward a Paradigm Shift for<br>Predictive Network Modeling. Plant Physiology, 2010, 152, 445-452.                                                                                                               | 2.3  | 34        |
| 52 | Nitrate-responsive miR393/ <i>AFB3</i> regulatory module controls root system architecture in<br><i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of<br>America, 2010, 107, 4477-4482.                                        | 3.3  | 556       |
| 53 | VirtualPlant: A Software Platform to Support Systems Biology Research  Â. Plant Physiology, 2010, 152,<br>500-515.                                                                                                                                                              | 2.3  | 254       |
| 54 | Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biology, 2010, 11, R123.                                                                                                                                          | 13.9 | 241       |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Impact of Outgroup Choice and Missing Data on Major Seed Plant Phylogenetics Using<br>Genome-Wide EST Data. PLoS ONE, 2009, 4, e5764.                                                                                                       | 1.1  | 54        |
| 56 | A Systems Approach Uncovers Restrictions for Signal Interactions Regulating Genome-wide Responses to Nutritional Cues in Arabidopsis. PLoS Computational Biology, 2009, 5, e1000326.                                                            | 1.5  | 64        |
| 57 | In Silico Evaluation of Predicted Regulatory Interactions in Arabidopsis thaliana. BMC Bioinformatics, 2009, 10, 435.                                                                                                                           | 1.2  | 3         |
| 58 | A system biology approach highlights a hormonal enhancer effect on regulation of genes in a nitrate<br>responsive "biomodule". BMC Systems Biology, 2009, 3, 59.                                                                                | 3.0  | 48        |
| 59 | A mutation in the Proteosomal Regulatory Particle AAA-ATPase-3 in Arabidopsis impairs the<br>light-specific hypocotyl elongation response elicited by a glutamate receptor agonist, BMAA. Plant<br>Molecular Biology, 2009, 70, 523-533.        | 2.0  | 17        |
| 60 | Gene Orthology Assessment with OrthologID. Methods in Molecular Biology, 2009, 537, 23-38.                                                                                                                                                      | 0.4  | 2         |
| 61 | Automated simultaneous analysis phylogenetics (ASAP): an enabling tool for phlyogenomics. BMC<br>Bioinformatics, 2008, 9, 103.                                                                                                                  | 1.2  | 30        |
| 62 | An integrated genetic, genomic and systems approach defines gene networks regulated by the interaction of light and carbon signaling pathways in Arabidopsis. BMC Systems Biology, 2008, 2, 31.                                                 | 3.0  | 55        |
| 63 | Cell-specific nitrogen responses mediate developmental plasticity. Proceedings of the National<br>Academy of Sciences of the United States of America, 2008, 105, 803-808.                                                                      | 3.3  | 557       |
| 64 | Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene <i>CCA1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4939-4944. | 3.3  | 333       |
| 65 | 2020 Vision for Biology: The Role of Plants in Addressing Grand Challenges in Biology. Molecular<br>Plant, 2008, 1, 561-563.                                                                                                                    | 3.9  | 8         |
| 66 | Sungear: interactive visualization and functional analysis of genomic datasets. Bioinformatics, 2007, 23, 259-261.                                                                                                                              | 1.8  | 35        |
| 67 | Insights into the genomic nitrate response using genetics and the Sungear Software System. Journal of Experimental Botany, 2007, 58, 2359-2367.                                                                                                 | 2.4  | 71        |
| 68 | Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biology, 2007, 8, R7.                                                                                    | 13.9 | 289       |
| 69 | ESTimating plant phylogeny: lessons from partitioning. BMC Evolutionary Biology, 2006, 6, 48.                                                                                                                                                   | 3.2  | 31        |
| 70 | OrthologID: automation of genome-scale ortholog identification within a parsimony framework.<br>Bioinformatics, 2006, 22, 699-707.                                                                                                              | 1.8  | 89        |
| 71 | Analysis of Glutamate Receptor Genes in Plants: Progress and Prospects. , 2005, , 245-255.                                                                                                                                                      |      | 0         |
| 72 | EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes. BMC Genomics, 2005, 6, 143.                                                                                                   | 1.2  | 34        |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Systems Biology for the Virtual Plant: Figure 1 Plant Physiology, 2005, 138, 550-554.                                                                                                  | 2.3  | 82        |
| 74 | Correlation of ASN2 Gene Expression with Ammonium Metabolism in Arabidopsis. Plant Physiology, 2004, 134, 332-338.                                                                     | 2.3  | 105       |
| 75 | Genomic Analysis of the Nitrate Response Using a Nitrate Reductase-Null Mutant of Arabidopsis. Plant<br>Physiology, 2004, 136, 2512-2522.                                              | 2.3  | 396       |
| 76 | Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants. Genome Biology, 2004, 5, R91. | 13.9 | 157       |
| 77 | Genome-wide investigation of light and carbon signaling interactions in Arabidopsis. Genome Biology, 2004, 5, R10.                                                                     | 13.9 | 71        |
| 78 | Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biology, 2003, 4,<br>R78.                                                                       | 13.9 | 74        |
| 79 | Overexpression of the ASN1 Gene Enhances Nitrogen Status in Seeds of Arabidopsis. Plant Physiology, 2003, 132, 926-935.                                                                | 2.3  | 193       |
| 80 | Plant Systems Biology. Plant Physiology, 2003, 132, 403-403.                                                                                                                           | 2.3  | 23        |
| 81 | Light- and Carbon-Signaling Pathways. Modeling Circuits of Interactions. Plant Physiology, 2003, 132, 440-452.                                                                         | 2.3  | 76        |
| 82 | Primary N-assimilation into Amino Acids in Arabidopsis. The Arabidopsis Book, 2003, 2, e0010.                                                                                          | 0.5  | 88        |
| 83 | Achieving the in silico plant. Systems biology and the future of plant biological research. Plant Physiology, 2003, 132, 404-9.                                                        | 2.3  | 15        |
| 84 | Overexpression of Cytosolic Glutamine Synthetase. Relation to Nitrogen, Light, and Photorespiration.<br>Plant Physiology, 2002, 129, 1170-1180.                                        | 2.3  | 239       |
| 85 | Phylogenetic and Expression Analysis of the Clutamate-Receptor–Like Gene Family in Arabidopsis<br>thaliana. Molecular Biology and Evolution, 2002, 19, 1066-1082.                      | 3.5  | 167       |
| 86 | Molecular and Physiological Analysis of Arabidopsis Mutants Defective in Cytosolic or Chloroplastic<br>Aspartate Aminotransferase. Plant Physiology, 2002, 129, 650-660.               | 2.3  | 65        |
| 87 | Arabidopsisglt1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway. Plant Journal, 2002, 29, 347-358.                                    | 2.8  | 108       |
| 88 | Carbon and nitrogen sensing and signaling in plants: emerging â€̃matrix effects'. Current Opinion in<br>Plant Biology, 2001, 4, 247-253.                                               | 3.5  | 386       |
| 89 | Using Combinatorial Design to Study Regulation by Multiple Input Signals. A Tool for Parsimony in the<br>Post-Genomics Era. Plant Physiology, 2001, 127, 1590-1594.                    | 2.3  | 52        |
| 90 | Nitrogen and Carbon Nutrient and Metabolite Signaling in Plants. Plant Physiology, 2001, 125, 61-64.                                                                                   | 2.3  | 316       |

GLORIA M CORUZZI

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | The Identity of Plant Glutamate Receptors. Science, 2001, 292, 1486b-1487.                                                                                                                                                                  | 6.0  | 175       |
| 92  | Arabidopsis Mutants Resistant to S(+)-β-Methyl-α, β-Diaminopropionic Acid, a Cycad-Derived Glutamate<br>Receptor Agonist. Plant Physiology, 2000, 124, 1615-1624.                                                                           | 2.3  | 87        |
| 93  | Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Molecular Biology and Evolution, 1999, 16, 826-838.                                                            | 3.5  | 185       |
| 94  | Carbon and Amino Acids Reciprocally Modulate the Expression of Glutamine Synthetase in Arabidopsis.<br>Plant Physiology, 1999, 121, 301-310.                                                                                                | 2.3  | 202       |
| 95  | Glutamate-receptor genes in plants. Nature, 1998, 396, 125-126.                                                                                                                                                                             | 13.7 | 328       |
| 96  | Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites inArabidopsis<br>thaliana. Plant Journal, 1998, 16, 345-353.                                                                                         | 2.8  | 217       |
| 97  | A PII-like protein in Arabidopsis: Putative role in nitrogen sensing. Proceedings of the National<br>Academy of Sciences of the United States of America, 1998, 95, 13965-13970.                                                            | 3.3  | 236       |
| 98  | Arabidopsis gls Mutants and Distinct Fd-GOGAT Genes: Implications for Photorespiration and Primary Nitrogen Assimilation. Plant Cell, 1998, 10, 741-752.                                                                                    | 3.1  | 203       |
| 99  | Arabidopsis gls Mutants and Distinct Fd-COGAT Genes: Implications for Photorespiration and Primary Nitrogen Assimilation. Plant Cell, 1998, 10, 741.                                                                                        | 3.1  | 24        |
| 100 | Dissecting Light Repression of the Asparagine Synthetase gene (AS1) in Arabidopsis. , 1998, , 147-157.                                                                                                                                      |      | 2         |
| 101 | Arabidopsis Mutants Define an in Vivo Role for Isoenzymes of Aspartate Aminotransferase in Plant<br>Nitrogen Assimilation. Genetics, 1998, 149, 491-499.                                                                                    | 1.2  | 73        |
| 102 | Light-induced transcriptional repression of the pea AS1 gene: identification of cis-elements and transfactors. Plant Journal, 1997, 12, 1021-1034.                                                                                          | 2.8  | 36        |
| 103 | Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate<br>dehydrogenase in nitrogen assimilation Proceedings of the National Academy of Sciences of the<br>United States of America, 1996, 93, 4718-4723. | 3.3  | 214       |
| 104 | Use of Arabidopsis Mutants and Genes to Study Amide Amino Acid Biosynthesis. Plant Cell, 1995, 7, 887.                                                                                                                                      | 3.1  | 1         |
| 105 | The aspartate aminotransferase gene family of Arabidopsis encodes isoenzymes localized to three distinct subcellular compartments. Plant Journal, 1995, 7, 61-75.                                                                           | 2.8  | 111       |
| 106 | Molecular evolution of duplicate copies of genes encoding cytosolic glutamine synthetase in Pisum<br>sativum. Plant Molecular Biology, 1995, 29, 1111-1125.                                                                                 | 2.0  | 14        |
| 107 | Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis Plant Cell, 1995, 7,<br>887-898.                                                                                                                                | 3.1  | 249       |
| 108 | cis Elements and trans-Acting Factors Affecting Regulation of a Nonphotosynthetic Light-Regulated<br>Gene for Chloroplast Glutamine Synthetase. Plant Physiology, 1995, 108, 1109-1117.                                                     | 2.3  | 60        |

GLORIA M CORUZZI

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Metabolic Regulation of the Gene Encoding Glutamine-Dependent Asparagine Synthetase in Arabidopsis<br>thaliana. Plant Physiology, 1994, 106, 1347-1357.                        | 2.3 | 228       |
| 110 | A Novel AT-Rich DNA Binding Protein That Combines an HMG I-Like DNA Binding Domain with a Putative<br>Transcription Domain. Plant Cell, 1994, 6, 107.                          | 3.1 | 13        |
| 111 | A Crucial Role for the NSF Postdoctoral Fellowship Program in Plant Biology. Plant Cell, 1993, 5, 722.                                                                         | 3.1 | 0         |
| 112 | Ectopic Overexpression of Asparagine Synthetase in Transgenic Tobacco. Plant Physiology, 1993, 103, 1285-1290.                                                                 | 2.3 | 81        |
| 113 | Appointments and awards. Plant Molecular Biology Reporter, 1992, 10, 4-4.                                                                                                      | 1.0 | 0         |
| 114 | A promoter sequence involved in cell-specific expression of the pea glutamine synthetaseGS3Agene in organs of transgenic tobacco and alfalfa. Plant Journal, 1991, 1, 235-244. | 2.8 | 69        |
| 115 | Developmentally Regulated Expression of the Gene Family for Cytosolic Glutamine Synthetase in Pisum sativum. Plant Physiology, 1989, 91, 702-708.                              | 2.3 | 71        |
| 116 | Photorespiration and Light Act in Concert to Regulate the Expression of the Nuclear Gene for<br>Chloroplast Glutamine Synthetase. Plant Cell, 1989, 1, 241.                    | 3.1 | 29        |
| 117 | Glutamine Synthetase of Nicotiana plumbaginifolia. Plant Physiology, 1987, 84, 366-373.                                                                                        | 2.3 | 79        |
| 118 | Expression dynamics of the pea rbcS multigene family and organ distribution of the transcripts. EMBO Journal, 1986, 5, 2063-2071.                                              | 3.5 | 107       |
| 119 | Molecular biology of C4 photosynthesis in Zea mays: differential localization of proteins and mRNAs<br>in the two leaf cell types. Plant Molecular Biology, 1984, 3, 431-444.  | 2.0 | 92        |
| 120 | Transfer RNA genes in the cap-oxil region of yeast mitochondrial DNA. Nucleic Acids Research, 1980, 8, 5017-5030.                                                              | 6.5 | 42        |
| 121 | ASSEMBLY OF THE MITOCHONDRIAL MEMBRANE SYSTEM: NUCLEAR SUPPRESSION OF A CYTOCHROME $b$ MUTATION IN YEAST MITOCHONDRIAL DNA. Genetics, 1980, 95, 891-903.                       | 1.2 | 7         |
| 122 | [9] The isolation of mitochondrial and nuclear mutants of Saccharomyces cerevisiae with specific defects in mitochondrial functions. Methods in Enzymology, 1979, 56, 95-106.  | 0.4 | 23        |
| 123 | Assembly of the Mitochondrial Membrane System: Mutations in the pho2 Locus of the Mitochondrial<br>Genome of Saccharomyces cerevisiae. FEBS Journal, 1978, 92, 279-287.        | 0.2 | 35        |
| 124 | Animal Systems Biology: Towards a Systems View of Development inC. Elegans. , 0, , 137-165.                                                                                    |     | 0         |
| 125 | Metabolomics: Integrating the Metabolome and the Proteome for Systems Biology. , 0, , 258-289.                                                                                 |     | 1         |
|     |                                                                                                                                                                                |     |           |

| #   | Article                                                                                                                        | IF | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 127 | Perspectives on Ecological and Evolutionary Systems Biology. , 0, , 331-349.                                                   |    | 8         |
| 128 | The Plant Genome: Decoding the Transcriptional Hardwiring. , 0, , 196-228.                                                     |    | 4         |
| 129 | From the Ionome to the Genome: Identifying the Gene Networks that Control the Mineral Content of Plants. , 0, , 290-303.       |    | 0         |
| 130 | Development and Systems Biology: Riding the Genomics Wave towards a Systems Understanding of Root Development. , 0, , 304-330. |    | 0         |
| 131 | An Overview of Systems Biology. , 0, , 41-66.                                                                                  |    | 1         |
| 132 | Prokaryotic Systems Biology. , 0, , 67-136.                                                                                    |    | 1         |
| 133 | Software Tools for Systems Biology: Visualizing the Outcomes of N Experiments on M Entities. , 0, ,<br>167-195.                |    | 0         |
| 134 | The RNA World: Identifying miRNA-Target RNA Pairs as Possible Missing Links in Multi-Network Models.<br>, 0, , 229-242.        |    | 0         |
| 135 | Proteomics: Setting the Stage for Systems Biology. , 0, , 243-257.                                                             |    | 0         |