Isabel Guerrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/842712/publications.pdf Version: 2024-02-01

ISAREL CHEDDEDO

#	Article	IF	CITATIONS
1	Hedgehog on track: Long-distant signal transport and transfer through direct cell-to-cell contact. Current Topics in Developmental Biology, 2022, , 1-24.	2.2	3
2	Glypicans define unique roles for the Hedgehog co-receptors boi and ihog in cytoneme-mediated gradient formation. ELife, 2021, 10, .	6.0	14
3	Improving the understanding of cytoneme-mediated morphogen gradients by in silico modeling. PLoS Computational Biology, 2021, 17, e1009245.	3.2	8
4	Dally-like Is Unlike Dally in Assisting Wingless Spread. Developmental Cell, 2020, 54, 572-573.	7.0	2
5	Polarized sorting of Patched enables cytonemeâ€mediated Hedgehog reception in the <i>Drosophila</i> wing disc. EMBO Journal, 2020, 39, e103629.	7.8	28
6	The cytoneme connection: direct long-distance signal transfer during development. Development (Cambridge), 2019, 146, .	2.5	61
7	<i>Drosophila</i> Zic family member odd-paired is needed for adult post-ecdysis maturation. Open Biology, 2019, 9, 190245.	3.6	5
8	From intra- to extracellular vesicles: extracellular vesicles in developmental signalling. Essays in Biochemistry, 2018, 62, 215-223.	4.7	7
9	Cytoneme-mediated cell-cell contacts for Hedgehog reception. ELife, 2017, 6, .	6.0	94
10	Perspectives on Intra- and Intercellular Trafficking of Hedgehog for Tissue Patterning. Journal of Developmental Biology, 2016, 4, 34.	1.7	12
11	The Transcription Factor Optomotor-Blind Antagonizes Drosophila Haltere Growth by Repressing Decapentaplegic and Hedgehog Targets. PLoS ONE, 2015, 10, e0121239.	2.5	10
12	In Vivo Imaging of Hedgehog Transport in Drosophila Epithelia. Methods in Molecular Biology, 2015, 1322, 9-18.	0.9	15
13	Modeling Hedgehog Signaling Through Flux-Saturated Mechanisms. Methods in Molecular Biology, 2015, 1322, 19-33.	0.9	3
14	Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle. Nature Communications, 2014, 5, 4272.	12.8	52
15	Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nature Communications, 2014, 5, 5649.	12.8	169
16	Frontiers in hedgehog signal transduction. Seminars in Cell and Developmental Biology, 2014, 33, 50-51.	5.0	1
17	Hedgehog and its circuitous journey from producing to target cells. Seminars in Cell and Developmental Biology, 2014, 33, 52-62.	5.0	35
18	Cytoneme-mediated cell-to-cell signaling during development. Cell and Tissue Research, 2013, 352, 59-66.	2.9	55

ISABEL GUERRERO

#	Article	IF	CITATIONS
19	On flux-limited morphogenesis. Physics of Life Reviews, 2013, 10, 495-497.	2.8	1
20	Balancing Hedgehog, a retention and release equilibrium given by Dally, Ihog, Boi and shifted/DmWif. Developmental Biology, 2013, 376, 198-212.	2.0	65
21	Morphogenetic action through flux-limited spreading. Physics of Life Reviews, 2013, 10, 457-475.	2.8	51
22	Hedgehog on the move: a precise spatial control of Hedgehog dispersion shapes the gradient. Current Opinion in Genetics and Development, 2013, 23, 363-373.	3.3	42
23	Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nature Cell Biology, 2013, 15, 1269-1281.	10.3	217
24	Cytoneme-Mediated Delivery of Hedgehog Regulates the Expression of Bone Morphogenetic Proteins to Maintain Germline Stem Cells in Drosophila. PLoS Biology, 2012, 10, e1001298.	5.6	151
25	The WIF domain of the human and <i>Drosophila</i> Wif-1 secreted factors confers specificity for Wnt or Hedgehog. Development (Cambridge), 2012, 139, 3849-3858.	2.5	18
26	Secreted frizzled-related proteins are required for Wnt/\hat{l}^2 -catenin signalling activation in the vertebrate optic cup. Development (Cambridge), 2011, 138, 4179-4184.	2.5	79
27	SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nature Neuroscience, 2011, 14, 562-569.	14.8	86
28	Dispatched mediates Hedgehog basolateral release to form the long-range morphogenetic gradient in the <i>Drosophila</i> wing disk epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12591-12598.	7.1	150
29	Lines is required for normal operation of Wingless, Hedgehog and Notch pathways during wing development. Development (Cambridge), 2009, 136, 1211-1221.	2.5	12
30	Patched, the receptor of Hedgehog, is a lipoprotein receptor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 912-917.	7.1	75
31	A conserved mechanism of Hedgehog gradient formation by lipid modifications. Trends in Cell Biology, 2007, 17, 1-5.	7.9	82
32	Detecting Tagged Hedgehog with Intracellular and Extracellular Immunocytochemistry for Functional Analysis. Methods in Molecular Biology, 2007, 397, 91-103.	0.9	2
33	Functional characterization of human mesenchymal stem cells that maintain osteochondral fates. Journal of Cellular Biochemistry, 2006, 98, 1457-1470.	2.6	30
34	Hedgehog lipid modifications are required for Hedgehog stabilization in the extracellular matrix. Development (Cambridge), 2006, 133, 471-483.	2.5	124
35	The Patched Receptor. , 2006, , 23-33.		2
36	Mechanisms of Hedgehog gradient formation and interpretation. Journal of Neurobiology, 2005, 64, 334-356.	3.6	73

ISABEL GUERRERO

#	Article	IF	CITATIONS
37	The Drosophila Ortholog of the Human Wnt Inhibitor Factor Shifted Controls the Diffusion of Lipid-Modified Hedgehog. Developmental Cell, 2005, 8, 241-253.	7.0	112
38	Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction. Development (Cambridge), 2004, 131, 2395-2408.	2.5	155
39	The Drosophila Polycomb group gene Sex combs extra encodes the ortholog of mammalian Ring1 proteins. Mechanisms of Development, 2004, 121, 449-462.	1.7	42
40	DEVELOPMENT: Longing for Ligand: Hedgehog, Patched, and Cell Death. Science, 2003, 301, 774-776.	12.6	36
41	Development of theDrosophilagenital disc requires interactions between its segmental primordia. Development (Cambridge), 2003, 130, 295-305.	2.5	18
42	The development of theDrosophilagenital disc. BioEssays, 2001, 23, 698-707.	2.5	66
43	The sterol-sensing domain of Patched protein seems to control Smoothened activity through Patched vesicular trafficking. Current Biology, 2001, 11, 601-607.	3.9	166
44	A Gain-of-Function Mutant of patched Dissects Different Responses to the Hedgehog Gradient. Developmental Biology, 2000, 228, 211-224.	2.0	35
45	Drosophila terminalia as an appendage-like structure. Mechanisms of Development, 1999, 86, 113-123.	1.7	55
46	The homeobox gene <i>Distal-less</i> induces ventral appendage development in <i>Drosophila</i> . Genes and Development, 1997, 11, 2259-2271.	5.9	154
47	The genital disc of Drosophila melanogaster Development Genes and Evolution, 1997, 207, 216-228.	0.9	50
48	The genital disc of Drosophila melanogaster. Development Genes and Evolution, 1997, 207, 229-241.	0.9	43
49	The fu gene discriminates between pathways to control dpp expression in Drosophila imaginal discs. Mechanisms of Development, 1996, 55, 159-170.	1.7	59
50	Targeted expression of the signaling molecule decapentaplegic induces pattern duplications and growth alterations in Drosophila wings EMBO Journal, 1994, 13, 4459-4468.	7.8	430
51	Developmental consequences of unrestricted expression of the abd-A gene of Drosophila. Mechanisms of Development, 1994, 46, 153-167.	1.7	23
52	The Drosophila segment polarity gene patched interacts with decapentaplegic in wing development EMBO Journal, 1994, 13, 71-82.	7.8	195
53	Unrestricted expression of the Drosophila gene patched allows a normal segment polarity. Nature, 1991, 353, 187-190.	27.8	34
54	A protein with several possible membrane-spanning domains encoded by the Drosophila segment polarity gene patched. Nature, 1989, 341, 508-513.	27.8	343

ISABEL GUERRERO

#	Article	IF	CITATIONS
55	Dissociation of c-fos from ODC expression and neuronal differentiation in a PC12 subline stably transfected with an inducible N-ras oncogene. Biochemical and Biophysical Research Communications, 1988, 150, 1185-1192.	2.1	69
56	Concomitant K- and N-ras gene point mutations in clonal murine lymphoma Molecular and Cellular Biology, 1988, 8, 2233-2236.	2.3	64
57	Differential expression of the ras gene family in mice Molecular and Cellular Biology, 1987, 7, 1535-1540.	2.3	204
58	Proto-oncogenes in pattern formation. Trends in Genetics, 1987, 3, 269-271.	6.7	1
59	Mutational activation of oncogenes in animal model systems of carcinogenesis (MTR 07217). Mutation Research - Reviews in Genetic Toxicology, 1987, 185, 293-308.	2.9	99
60	Activated N-ras gene induces neuronal differentiation of PC12 rat pheochromocytoma cells. Journal of Cellular Physiology, 1986, 129, 71-76.	4.1	143
61	Oncogene activation and surface markers in mouse lymphomas induced by radiation and nitrosomethylurea. Leukemia Research, 1986, 10, 851-858.	0.8	16
62	Single-Base Mutations Associated with Mouse Lymphomas. , 1986, 39, 313-322.		0
63	Loss of the normal N-ras allele in a mouse thymic lymphoma induced by a chemical carcinogen Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 7810-7814.	7.1	100
64	Isolation, characterization, and chromosome assignment of mouse N-ras gene from carcinogen-induced thymic lymphoma. Science, 1984, 225, 1041-1043.	12.6	44
65	Activation of a c-K-ras oncogene by somatic mutation in mouse lymphomas induced by gamma radiation. Science, 1984, 225, 1159-1162.	12.6	191
66	A molecular approach to leukemogenesis: mouse lymphomas contain an activated c-ras oncogene Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 202-205.	7.1	180
67	Fractionation by micrococcal nuclease digestion of Drosophila embryo chromatin: isolation of a fraction enriched in two major nonhistone proteins. Cell Differentiation, 1983, 12, 307-316.	0.4	4
68	Detecting Tagged Hedgehog with Intracellular and Extracellular Immunocytochemistry for		0

⁶⁸ Functional Analysis. , 0, , 91-104.

5