Kentaro Somiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8426535/publications.pdf

Version: 2024-02-01

20817 17105 15,329 180 60 citations h-index papers

122 g-index 184 184 184 6650 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	4.0	1,211
2	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
3	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
4	Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector. Classical and Quantum Gravity, 2012, 29, 124007.	4.0	726
5	Interferometer design of the KAGRA gravitational wave detector. Physical Review D, 2013, 88, .	4.7	722
6	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	16.7	716
7	Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 2011, 28, 094013.	4.0	644
8	The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 2011, 28, 094011.	4.0	456
9	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
10	The Japanese space gravitational wave antennaâ€"DECIGO. Classical and Quantum Gravity, 2006, 23, S125-S131.	4.0	388
11	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	4.0	355
12	KAGRA: 2.5 generation interferometric gravitational wave detector. Nature Astronomy, 2019, 3, 35-40.	10.1	331
13	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
14	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	4.0	287
15	Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy. Physical Review Letters, 2001, 86, 3950-3954.	7.8	255
16	Overview of KAGRA: Detector design and construction history. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	198
17	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	4.7	185
18	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	4.5	160

#	Article	IF	Citations
19	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
20	Current status of space gravitational wave antenna DECIGO and B-DECIGO. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	150
21	The status of DECIGO. Journal of Physics: Conference Series, 2017, 840, 012010.	0.4	148
22	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	4.5	143
23	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	4.7	132
24	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	4.7	128
25	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	4.7	126
26	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	2.9	123
27	Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .	4.7	121
28	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	4.5	120
29	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	4.7	120
30	Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	1.6	120
31	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	4.7	111
32	All-sky search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2008, 77, .	4.7	110
33	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	4.7	107
34	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	4.7	107
35	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	105
36	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	4.5	104

3

#	Article	IF	CITATIONS
37	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
38	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94
39	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	4.7	92
40	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	4.7	91
41	Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .	4.7	90
42	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
43	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
44	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	4.7	85
45	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	5.1	84
46	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
47	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	4.7	83
48	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	4.7	79
49	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	4.0	78
50	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	4.7	78
51	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	5.1	75
52	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
53	Construction of KAGRA: an underground gravitational-wave observatory. Progress of Theoretical and Experimental Physics, 2018, 2018, .	6.6	73
54	Space gravitational-wave antennas DECIGO and B-DECIGO. International Journal of Modern Physics D, 2019, 28, 1845001.	2.1	73

#	Article	IF	CITATIONS
55	First search for gravitational waves from inspiraling compact binaries using TAMA300 data. Physical Review D, 2001, 63, .	4.7	70
56	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	7.8	69
57	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	4.7	66
58	Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	66
59	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
60	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	4.7	60
61	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60
62	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	4.5	60
63	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
64	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .	4.7	54
65	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	4.7	54
66	Search for gravitational wave radiation associated with the pulsating tail of the SGR <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1806</mml:mn><mml:mo>â^3</mml:mo><mml:mn>20</mml:mn></mml:math> hyper of 27 December 2004 using LIGO. Physical Review D, 2007, 76, .	flare	51
67	Measurement and subtraction of Schumann resonances at gravitational-wave interferometers. Physical Review D, 2018, 97, .	4.7	50
68	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. Physical Review D, 2005, 72, .	4.7	49
69	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	4.7	48
70	The Japanese space gravitational wave antenna - DECIGO. Journal of Physics: Conference Series, 2008, 122, 012006.	0.4	46
71	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	4.7	45
72	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	4.5	45

#	Article	IF	CITATIONS
73	First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. Classical and Quantum Gravity, 2019, 36, 165008.	4.0	45
74	Present status of large-scale cryogenic gravitational wave telescope. Classical and Quantum Gravity, 2004, 21, S1161-S1172.	4.0	43
75	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	4.7	43
76	Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries. Physical Review D, 2006, 73, .	4.7	40
77	Double optical spring enhancement for gravitational-wave detectors. Physical Review D, 2008, 78, .	4.7	39
78	DECIGO and DECIGO pathfinder. Classical and Quantum Gravity, 2010, 27, 084010.	4.0	39
79	Mirror suspension system for the TAMA SAS. Classical and Quantum Gravity, 2002, 19, 1615-1621.	4.0	38
80	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D, 2009, 80, .	4.7	38
81	Probing macroscopic quantum states with a sub-Heisenberg accuracy. Physical Review A, 2010, 81, .	2.5	38
82	Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors. Physical Review A, 2009, 80, .	2.5	36
83	Anatomy of the TAMA SAS seismic attenuation system. Classical and Quantum Gravity, 2002, 19, 1605-1614.	4.0	35
84	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .	4.7	35
85	Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes. Physical Review D, 2006, 73, .	4.7	34
86	The Japanese space gravitational wave antenna; DECIGO. Journal of Physics: Conference Series, 2008, 120, 032004.	0.4	34
87	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	32
88	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	5 . 4	32
89	Overview of KAGRA: KAGRA science. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	31
90	DECIGO: The Japanese space gravitational wave antenna. Journal of Physics: Conference Series, 2009, 154, 012040.	0.4	30

#	Article	IF	CITATIONS
91	Interferometers for Displacement-Noise-Free Gravitational-Wave Detection. Physical Review Letters, 2006, 97, 151103.	7.8	26
92	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	4.0	26
93	The AEI 10 m prototype interferometer. Classical and Quantum Gravity, 2010, 27, 084023.	4.0	25
94	Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses. Physical Review D, 2005, 71, .	4.7	24
95	Estimation of losses in a 300Âm filter cavity and quantum noise reduction in the KAGRA gravitational-wave detector. Physical Review D, 2016, 93, .	4.7	24
96	Three Successive and Interacting Shock Waves Generated by a Solar Flare. Astrophysical Journal, 2008, 684, L45-L49.	4.5	23
97	Quantum noise of a Michelson-Sagnac interferometer with a translucent mechanical oscillator. Physical Review A, 2010, 81, .	2.5	23
98	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	4.0	22
99	Japanese large-scale interferometers. Classical and Quantum Gravity, 2002, 19, 1237-1245.	4.0	21
100	Current status of large-scale cryogenic gravitational wave telescope. Classical and Quantum Gravity, 2003, 20, S871-S884.	4.0	21
101	Local readout enhancement for detuned signal-recycling interferometers. Physical Review D, 2007, 76,	4.7	20
102	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
103	Coating thermal noise of a finite-size cylindrical mirror. Physical Review D, 2009, 79, .	4.7	19
104	DECIGO pathfinder. Classical and Quantum Gravity, 2009, 26, 094019.	4.0	18
105	Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data. Physical Review D, 2004, 70, .	4.7	16
106	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	4.0	16
107	Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector. Physical Review D, 2018, 97, .	4.7	15
108	Direct approach for the fluctuation-dissipation theorem under nonequilibrium steady-state conditions. Physical Review D, 2018, 97, .	4.7	15

#	Article	IF	CITATIONS
109	Cryogenic suspension design for a kilometer-scale gravitational-wave detector. Classical and Quantum Gravity, 2021, 38, 085013.	4.0	15
110	Demonstration of Displacement- and Frequency-Noise-Free Laser Interferometry Using Bidirectional Mach-Zehnder Interferometers. Physical Review Letters, 2007, 98, 141101.	7.8	14
111	Parametric signal amplification to create a stiff optical bar. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 521-524.	2.1	14
112	Mirror actuation design for the interferometer control of the KAGRA gravitational wave telescope. Classical and Quantum Gravity, 2017, 34, 225001.	4.0	14
113	Design of the 10 m AEI prototype facility for interferometry studies. Applied Physics B: Lasers and Optics, 2012, 106, 551-557.	2.2	13
114	Measurement of optical losses in a high-finesse 300Âm filter cavity for broadband quantum noise reduction in gravitational-wave detectors. Physical Review D, 2018, 98, .	4.7	13
115	The Current Status and Future Prospects of KAGRA, the Large-Scale Cryogenic Gravitational Wave Telescope Built in the Kamioka Underground. Galaxies, 2022, 10, 63.	3.0	13
116	Reduction of coating thermal noise by using an etalon. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1363-1374.	2.1	12
117	Prospects for improving the sensitivity of the cryogenic gravitational wave detector KAGRA. Physical Review D, 2020, 102, .	4.7	12
118	The status of KAGRA underground cryogenic gravitational wave telescope. Journal of Physics: Conference Series, 2020, 1342, 012014.	0.4	12
119	Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000–2004. Physical Review D, 2006, 74, .	4.7	11
120	Reducing thermal noise in future gravitational wave detectors by employing Khalili etalons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 4147-4157.	2.1	11
121	Influence of nonuniformity in sapphire substrates for a gravitational wave telescope. Physical Review D, 2019, 100, .	4.7	10
122	An arm length stabilization system for KAGRA and future gravitational-wave detectors. Classical and Quantum Gravity, 2020, 37, 035004.	4.0	10
123	Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors. Applied Optics, 2005, 44, 3179.	2.1	9
124	Diagonalization of the length sensing matrix of a dual recycled laser interferometer gravitational wave antenna. Physical Review D, 2007, 75, .	4.7	9
125	Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA. Classical and Quantum Gravity, 2019, 36, 095015.	4.0	9
126	Measurement of Schumann Resonance at Kamioka. Journal of Physics: Conference Series, 2016, 716, 012020.	0.4	8

#	Article	IF	CITATIONS
127	Development of a suspended-mass RSE interferometer using third harmonic demodulation. Classical and Quantum Gravity, 2002, 19, 1555-1560.	4.0	7
128	Remarks on thermoelastic effects at low temperatures and quantum limits in displacement measurements. Physical Review D, 2010, 82, .	4.7	7
129	Application of independent component analysis to the iKAGRA data. Progress of Theoretical and Experimental Physics, 2020, 2020, .	6.6	7
130	Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector. Classical and Quantum Gravity, 2021, 38, 065011.	4.0	7
131	Photodetection method using unbalanced sidebands for squeezed quantum noise in a gravitational wave interferometer. Physical Review D, 2003, 67, .	4.7	6
132	Analysis methods for burst gravitational waves with TAMA data. Classical and Quantum Gravity, 2004, 21, S1679-S1684.	4.0	6
133	Development of a control scheme of homodyne detection for extracting ponderomotive squeezing from a Michelson interferometer. Journal of Physics: Conference Series, 2006, 32, 464-469.	0.4	6
134	Optical detector topology for third-generation gravitational wave observatories. General Relativity and Gravitation, 2011, 43, 537-567.	2.0	6
135	Length sensing and control strategies for the LCGT interferometer. Classical and Quantum Gravity, 2012, 29, 124008.	4.0	6
136	UNDERGROUND GRAVITATIONAL WAVE OBSERVATORIES: KAGRA AND ET. International Journal of Modern Physics D, 2013, 22, 1330010.	2.1	6
137	The Experimental plan of the 4m Resonant Sideband Extraction Prototype for The LCGT. Journal of Physics: Conference Series, 2006, 32, 380-385.	0.4	5
138	Experimental investigation of a control scheme for a zero-detuning resonant sideband extraction interferometer for next-generation gravitational-wave detectors. Classical and Quantum Gravity, 2008, 25, 195008.	4.0	5
139	DECIGO pathfinder. Journal of Physics: Conference Series, 2008, 120, 032005.	0.4	5
140	Shot-noise-limited control-loop noise in an interferometer with multiple degrees of freedom. Applied Optics, 2010, 49, 4335.	2.1	5
141	Design study of the KAGRA output mode cleaner. Optical Review, 2015, 22, 149-152.	2.0	5
142	Isolation of gravitational waves from displacement noise and utility of a time-delay device. Journal of Physics: Conference Series, 2007, 66, 012053.	0.4	4
143	Utility investigation of artificial time delay in displacement-noise-free interferometers. Physical Review D, 2007, 76, .	4.7	4
144	Reduction and Possible Elimination of Coating Thermal Noise Using a Rigidly Controlled Cavity with a Quantum-Nondemolition Technique. Physical Review Letters, 2009, 102, 230801.	7.8	4

#	Article	IF	CITATIONS
145	Status of the AEI 10 m prototype. Classical and Quantum Gravity, 2012, 29, 145005.	4.0	4
146	Design study and prototype experiment of the KAGRA output mode-cleaner. Journal of Physics: Conference Series, 2016, 716, 012032.	0.4	4
147	Design and experimental demonstration of a laser modulation system for future gravitational-wave detectors. Classical and Quantum Gravity, 2019, 36, 205009.	4.0	4
148	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	3
149	Localization of gravitational waves using machine learning. Physical Review D, 2022, 105, .	4.7	3
150	Prospects for improving the sensitivity of KAGRA gravitational wave detector., 2022,,.		3
151	Diagonalizing sensing matrix of broadband RSE. Journal of Physics: Conference Series, 2006, 32, 470-475.	0.4	2
152	Development of a signal-extraction scheme for resonant sideband extraction. Classical and Quantum Gravity, 2008, 25, 235013.	4.0	2
153	Designs of the frequency reference cavity for the AEI 10 m Prototype interferometer. Journal of Physics: Conference Series, 2010, 228, 012028.	0.4	2
154	Towards a Suspension Platform Interferometer for the AEI 10 m Prototype Interferometer. Journal of Physics: Conference Series, 2010, 228, 012027.	0.4	2
155	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2012, 85, .	4.7	2
156	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	2
157	Method to reduce excess noise of a detuned cavity for application in KAGRA. Classical and Quantum Gravity, 2014, 31, 095003.	4.0	2
158	Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity and Gravitation, 2014, 46, 1.	2.0	2
159	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	2.0	2
160	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , $2018,21,1.$		2
161	The AEI 10 m Prototype Interferometer frequency control using the reference cavity and its angular control. Journal of Physics: Conference Series, 2012, 363, 012012.	0.4	1
162	Optical design and suspension system of the KAGRA output mode-cleaner. Journal of Physics: Conference Series, 2018, 957, 012009.	0.4	1

#	Article	IF	CITATIONS
163	Quantum noise reduction techniques in KAGRA. European Physical Journal D, 2020, 74, 1.	1.3	1
164	Radiative Cooling of the Thermally Isolated System in KAGRA Gravitational Wave Telescope. Journal of Physics: Conference Series, 2021, 1857, 012002.	0.4	1
165	Induced current damping for the suspension system of a gravitational-wave detector. Review of Scientific Instruments, 2002, 73, 3942-3945.	1.3	0
166	Power-recycled resonant sideband extraction interferometer with polarization detection. Applied Optics, 2005, 44, 3413.	2.1	0
167	Downselect of the signal extraction scheme for LCGT. Journal of Physics: Conference Series, 2006, 32, 424-431.	0.4	O
168	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. DPRVDAQ0556-282176, 022001 (2007)]. Physical Review D, 2007, 76, .	4.7	0
169	Publisher's Note: Upper limit map of a background of gravitational waves [Phys. Rev. D 76 , 082003 (2007)]. Physical Review D, 2008, 77, .	4.7	0
170	Publisher's Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
171	Demonstration of displacement-noise-free interferometry using bi-directional Mach–Zehnder interferometers. Classical and Quantum Gravity, 2008, 25, 114031.	4.0	0
172	Publisher's Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001 (2008)]. Physical Review D, 2008, 77, .	4.7	0
173	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. D 76 , 022001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
174	Displacement noise free interferometory for gravitational wave detection. Journal of Physics: Conference Series, 2008, 120, 032006.	0.4	0
175	The experimental plan of displacement- and frequency-noise free laser interferometer. Journal of Physics: Conference Series, 2008, 122, 012022.	0.4	0
176	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2011, 83, .	4.7	0
177	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	4.7	0
178	DECIGO: THE JAPANESE SPACE GRAVITATIONAL WAVE ANTENNA. , 2008, , .		0
179	UNDERGROUND GRAVITATIONAL WAVE OBSERVATORIES: KAGRA AND ET., 2015,,.		0
180	Methods of improving thermal noise. , 0, , 73-92.		0