
Jin Mo Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8426508/publications.pdf Version: 2024-02-01

ΙΝ Μο CHUNC

#	Article	IF	CITATIONS
1	A neuron-to-astrocyte Wnt5a signal governs astrogliosis during HIV-associated pain pathogenesis. Brain, 2022, 145, 4108-4123.	7.6	12
2	HIV-Related Neuropathy: Pathophysiology, Treatment and Challenges. Journal of Neurology and Experimental Neuroscience, 2021, 7, 15-24.	0.1	2
3	Neuron Type-Dependent Synaptic Activity in the Spinal Dorsal Horn of Opioid-Induced Hyperalgesia Mouse Model. Frontiers in Synaptic Neuroscience, 2021, 13, 748929.	2.5	1
4	Low-intensity, Kilohertz Frequency Spinal Cord Stimulation Differently Affects Excitatory and Inhibitory Neurons in the Rodent Superficial Dorsal Horn. Neuroscience, 2020, 428, 132-139.	2.3	58
5	Circadian regulation of chemotherapy-induced peripheral neuropathic pain and the underlying transcriptomic landscape. Scientific Reports, 2020, 10, 13844.	3.3	21
6	Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Molecular Pain, 2019, 15, 174480691984009.	2.1	95
7	Microglia Mediate HIV-1 gp120-Induced Synaptic Degeneration in Spinal Pain Neural Circuits. Journal of Neuroscience, 2019, 39, 8408-8421.	3.6	38
8	Maternal vaccination and protective immunity against Zika virus vertical transmission. Nature Communications, 2019, 10, 5677.	12.8	32
9	Mitochondrial superoxide increases excitatory synaptic strength in spinal dorsal horn neurons of neuropathic mice. Molecular Pain, 2018, 14, 174480691879703.	2.1	26
10	An Energy-Efficient Wirelessly Powered Millimeter-Scale Neurostimulator Implant Based on Systematic Codesign of an Inductive Loop Antenna and a Custom Rectifier. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 1131-1143.	4.0	38
11	Peripheral afferents and spinal inhibitory system in dynamic and static mechanical allodynia. Pain, 2017, 158, 2285-2289.	4.2	25
12	Reactive oxygen species affect spinal cell type-specific synaptic plasticity in a model of neuropathic pain. Pain, 2017, 158, 2137-2146.	4.2	46
13	Differential involvement of reactive oxygen species in a mouse model of capsaicin-induced secondary mechanical hyperalgesia and allodynia. Molecular Pain, 2017, 13, 174480691771390.	2.1	7
14	Acupuncture points can be identified as cutaneous neurogenic inflammatory spots. Scientific Reports, 2017, 7, 15214.	3.3	68
15	Dysregulation of Norepinephrine Release in the Absence of Functional Synaptotagmin 7. Journal of Cellular Biochemistry, 2016, 117, 1446-1453.	2.6	8
16	Induction of long-term potentiation and long-term depression is cell-type specific in the spinal cord. Pain, 2015, 156, 618-625.	4.2	31
17	Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain, 2011, 152, 844-852.	4.2	206
18	Mitochondrial Ca ²⁺ Uptake Is Essential for Synaptic Plasticity in Pain. Journal of Neuroscience, 2011, 31, 12982-12991.	3.6	73

JIN MO CHUNG

#	Article	IF	CITATIONS
19	Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle. Journal of Neurophysiology, 2011, 105, 2043-2049.	1.8	9
20	Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats. Journal of Neurophysiology, 2011, 105, 2050-2057.	1.8	21
21	Involvement of Reactive Oxygen Species in Long-Term Potentiation in the Spinal Cord Dorsal Horn. Journal of Neurophysiology, 2010, 103, 382-391.	1.8	66
22	Peripheral Acid-Sensing Ion Channels and P2X Receptors Contribute to Mechanical Allodynia in a Rodent Thrombus-Induced Ischemic Pain Model. Journal of Pain, 2010, 11, 718-727.	1.4	18
23	Persistent Pain Is Dependent on Spinal Mitochondrial Antioxidant Levels. Journal of Neuroscience, 2009, 29, 159-168.	3.6	137
24	Electroacupuncture suppresses capsaicin-induced secondary hyperalgesia through an endogenous spinal opioid mechanism. Pain, 2009, 145, 332-340.	4.2	56
25	Superoxide signaling in pain is independent of nitric oxide signaling. NeuroReport, 2009, 20, 1424-1428.	1.2	32
26	Phenyl N-t-butylnitrone, a reactive oxygen species scavenger, reduces zymosan-induced visceral pain in rats. Neuroscience Letters, 2008, 439, 216-219.	2.1	24
27	A surgical ankle sprain pain model in the rat: Effects of morphine and indomethacin. Neuroscience Letters, 2008, 442, 161-164.	2.1	27
28	Increased production of mitochondrial superoxide in the spinal cord induces pain behaviors in mice: The effect of mitochondrial electron transport complex inhibitors. Neuroscience Letters, 2008, 447, 87-91.	2.1	64
29	Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain, 2008, 138, 514-524.	4.2	145
30	Injury discharges regulate calcium channel alpha-2-delta-1 subunit upregulation in the dorsal horn that contributes to initiation of neuropathic pain. Pain, 2008, 139, 358-366.	4.2	74
31	A new rat model for thrombus-induced ischemic pain (TIIP); development of bilateral mechanical allodynia. Pain, 2008, 139, 520-532.	4.2	32
32	Sodium Channels and Neuropathic Pain. Novartis Foundation Symposium, 2008, , 19-31.	1.1	8
33	Proteomics study of neuropathic and nonneuropathic dorsal root ganglia: altered protein regulation following segmental spinal nerve ligation injury. Physiological Genomics, 2007, 29, 215-230.	2.3	64
34	Functional motoneurons develop from human neural stem cell transplants in adult rats. NeuroReport, 2007, 18, 565-569.	1.2	38
35	Prolonged maintenance of capsaicin-induced hyperalgesia by brief daily vibration stimuli. Pain, 2007, 129, 93-101.	4.2	13
36	Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain, 2007, 131, 262-271.	4.2	212

Јім Мо Снимс

#	Article	IF	CITATIONS
37	Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons. Neuroscience Letters, 2006, 391, 108-111.	2.1	126
38	Analgesic effect of vitamin E is mediated by reducing central sensitization in neuropathic pain. Pain, 2006, 122, 53-62.	4.2	109
39	Chapter 10 Voltageâ€Gated Sodium Channels and Neuropathic Pain. Current Topics in Membranes, 2006, 57, 311-321.	0.9	1
40	Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats. Pain, 2005, 116, 62-72.	4.2	115
41	Single-Fiber Recording. , 2004, 99, 155-166.		89
42	Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain, 2004, 111, 116-124.	4.2	381
43	The Role of Reactive Oxygen Species (ROS) in Persistent Pain. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2004, 4, 248-250.	3.4	73
44	Sodium channels and neuropathic pain. Novartis Foundation Symposium, 2004, 261, 19-27; discussion 27-31, 47-54.	1.1	2
45	Peripheral norepinephrine exacerbates neuritis-induced hyperalgesia. Journal of Pain, 2003, 4, 212-221.	1.4	39
46	Changes in the gene expression of six subtypes of P2X receptors in rat dorsal root ganglion after spinal nerve ligation. Neuroscience Letters, 2003, 337, 81-84.	2.1	42
47	Acupuncture analgesia in a new rat model of ankle sprain pain. Pain, 2002, 99, 423-431.	4.2	94
48	Changes in three subtypes of tetrodotoxin sensitive sodium channel expression in the axotomized dorsal root ganglion in the rat. Neuroscience Letters, 2002, 323, 125-128.	2.1	80
49	Importance of Hyperexcitability of DRG Neurons in Neuropathic Pain. Pain Practice, 2002, 2, 87-97.	1.9	88
50	Two variables that can be used as pain indices in experimental animal models of arthritis. Journal of Neuroscience Methods, 2002, 115, 107-113.	2.5	70
51	The effect of lumbar sympathectomy in the spinal nerve ligation model of neuropathic pain. Journal of Pain, 2001, 2, 270-278.	1.4	20
52	Non-noxious A fiber afferent input enhances capsaicin-induced mechanical hyperalgesia in the rat. Pain, 2001, 94, 169-175.	4.2	21
53	Differential expression of alpha1-adrenoceptor subtype mRNAs in the dorsal root ganglion after spinal nerve ligation. Molecular Brain Research, 2001, 93, 164-172.	2.3	77
54	The changes in expression of three subtypes of TTX sensitive sodium channels in sensory neurons after spinal nerve ligation. Molecular Brain Research, 2001, 95, 153-161.	2.3	153

JIN MO CHUNG

#	Article	IF	CITATIONS
55	Sympathetic sprouting in the dorsal root ganglion after spinal nerve ligation: evidence of regenerative collateral sprouting. Brain Research, 2001, 895, 204-212.	2.2	49
56	lon channels associated with the ectopic discharges generated after segmental spinal nerve injury in the rat. Brain Research, 2001, 900, 119-127.	2.2	69
57	Development of purinergic sensitivity in sensory neurons after peripheral nerve injury in the rat. Brain Research, 2001, 915, 161-169.	2.2	39
58	Facilitation of NMDA-induced currents and Ca2+ transients in the rat substantia gelatinosa neurons after ligation of L5–L6 spinal nerves. NeuroReport, 2000, 11, 4055-4061.	1.2	35
59	Low dose of tetrodotoxin reduces neuropathic pain behaviors in an animal model. Brain Research, 2000, 871, 98-103.	2.2	112
60	Effects of purinergic and adrenergic antagonists in a rat model of painful peripheral neuropathy. Pain, 2000, 87, 171-179.	4.2	39
61	Receptor Subtype Mediating the Adrenergic Sensitivity of Pain Behavior and Ectopic Discharges in Neuropathic Lewis Rats. Journal of Neurophysiology, 1999, 81, 2226-2233.	1.8	84
62	Changes in trkA expression in the dorsal root ganglion after peripheral nerve injury. Experimental Brain Research, 1999, 127, 141-146.	1.5	26
63	Ectopic discharges and adrenergic sensitivity of sensory neurons after spinal nerve injury. Brain Research, 1999, 849, 244-247.	2.2	70
64	Heritability of nociception II. †Types' of nociception revealed by genetic correlation analysis. Pain, 1999, 80, 83-93.	4.2	217
65	Heritability of nociception I: Responses of 11 inbred mouse strains on 12 measures of nociception. Pain, 1999, 80, 67-82.	4.2	581
66	Adrenergic sensitivity of the sensory receptors modulating mechanical allodynia in a rat neuropathic pain model. Pain, 1999, 80, 589-595.	4.2	53
67	Expression of neurotrophin mRNAs in the dorsal root ganglion after spinal nerve injury. Molecular Brain Research, 1999, 64, 186-192.	2.3	69
68	Expression of nerve growth factor in the dorsal root ganglion after peripheral nerve injury. Brain Research, 1998, 796, 99-106.	2.2	77
69	Nitric oxide mediates behavioral signs of neuropathic pain in an experimental rat model. NeuroReport, 1998, 9, 367-372.	1.2	86
70	Strain differences in adrenergic sensitivity of neuropathic pain behaviors in an experimental rat model. NeuroReport, 1997, 8, 3453-3456.	1.2	58
71	Sprouting sympathetic fibers form synaptic varicosities in the dorsal root ganglion of the rat with neuropathic injury. Brain Research, 1997, 751, 275-280.	2.2	73
72	Comparison of three rodent neuropathic pain models. Experimental Brain Research, 1997, 113, 200-206.	1.5	428

Јім Мо Снимс

#	Article	IF	CITATIONS
73	Neuropathic pain in neonatal rats. Neuroscience Letters, 1996, 209, 140-142.	2.1	27
74	Contributions of injured and intact afferents to neuropathic pain in an experimental rat model. Pain, 1996, 64, 27-36.	4.2	216
75	Both motor and sensory abnormalities contribute to changes in foot posture in an experimental rat neuropathic model. Pain, 1996, 67, 173-178.	4.2	26
76	Sympathetic sprouting in the dorsal root ganglia of the injured peripheral nerve in a rat neuropathic pain model. Journal of Comparative Neurology, 1996, 376, 241-252.	1.6	219
77	Effects of age on behavioral signs of neuropathic pain in an experimental rat model. Neuroscience Letters, 1995, 183, 54-57.	2.1	53
78	Norepinephrine Rekindles Mechanical Allodynia in Sympathectomized Neuropathic Rat. Analgesia (Elmsford, N Y), 1995, 1, 107-113.	0.5	39
79	Increased nitric oxide synthase immunoreactivity in rat dorsal root ganglia in a neuropathic pain model. Neuroscience Letters, 1994, 169, 81-84.	2.1	124
80	Behavioral manifestations of an experimental model for peripheral neuropathy produced by spinal nerve ligation in the primate. Pain, 1994, 56, 155-166.	4.2	99
81	Immunohistochemical evidence for sprouting of ventral root afferents after neonatal sciatic neurectomy in the rat. Neuroscience Letters, 1994, 165, 125-128.	2.1	9
82	Response properties of hypogastric afferent fibers supplying the uterus in the cat. Brain Research, 1993, 622, 215-225.	2.2	60
83	Neonatal sciatic nerve lesion triggers the sprouting of fibers in the contralateral ventral root of the rat. Brain Research, 1993, 632, 80-85.	2.2	8
84	Signs of neuropathic pain depend on signals from injured nerve fibers in a rat model. Brain Research, 1993, 610, 62-68.	2.2	243
85	Abnormalities of sympathetic innervation in the area of an injured peripheral nerve in a rat model of neuropathic pain. Neuroscience Letters, 1993, 162, 85-88.	2.1	203
86	Somatic afferent fibers which continuously discharge after being isolated from their receptors. Brain Research, 1992, 599, 29-33.	2.2	32
87	Sympathectomy alleviates mechanical allodynia in an experimental animal model for neuropathy in the rat. Neuroscience Letters, 1991, 134, 131-134.	2.1	197
88	Evidence for invasion of regenerated ventral root afferents into the spinal cord of the rat subjected to sciatic neurectomy during the neonatal period. Brain Research, 1991, 552, 311-319.	2.2	11
89	Prolonged ongoing discharges of sensory nerves as recorded in isolated nerves in the rat. Journal of Neuroscience Research, 1990, 27, 219-227.	2.9	13
90	Increased number of unmyelinated fibers in the ventral root after peripheral neurectomy in adult rat. Neuroscience Letters, 1990, 116, 40-44.	2.1	9

Јім Мо Снимс

#	Article	IF	CITATIONS
91	Fiber counts at multiple sites along the rat ventral root after neonatal peripheral neurectomy or dorsal rhizotomy. Journal of Comparative Neurology, 1989, 290, 336-342.	1.6	17
92	Electrophysiological evidence for the presence of looping myelinated afferent fibers in the rat ventral root. Neuroscience Letters, 1989, 104, 65-70.	2.1	9
93	Electrophysiological evidence for an increase in the number of ventral root afferent fibers after neonatal peripheral neurectomy in the rat. Brain Research, 1989, 501, 90-99.	2.2	12
94	Many ventral root afferent fibers in the cat are third branches of dorsal root ganglion cells. Brain Research, 1987, 417, 304-314.	2.2	24
95	Ascending spinal pathway for arterial pressor response elicited by ventral root afferent inputs in the cat. Brain Research, 1986, 377, 182-185.	2.2	25
96	Correlation of cell body size, axon size, and signal conduction velocity for individually labelled dorsal root ganglion cells in the cat. Journal of Comparative Neurology, 1986, 243, 335-346.	1.6	242
97	Inhibition of primate spinothalamic tract cells by TENS. Journal of Neurosurgery, 1985, 62, 276-287.	1.6	89
98	Flexion reflex elicited by ventral root afferents in the cat. Neuroscience Letters, 1985, 62, 353-358.	2.1	15
99	Electrophysiological evidence for the presence of fibers in continuity between dorsal and ventrl roots in the cat. Brain Research, 1985, 338, 355-359.	2.2	19
100	Effects of capsaicin applied to a peripheral nerve on the responses of primate spinothalamic tract cells. Brain Research, 1985, 329, 27-38.	2.2	86
101	Segmental distribution of dorsal root ganglion cells with axons in the inferior cardiac nerve. Neuroscience Letters, 1984, 52, 185-190.	2.1	7
102	Midbrain nuclei projecting to the medial medulla oblongata in the monkey. Journal of Comparative Neurology, 1983, 214, 93-102.	1.6	39
103	Cells of origin of the spinoreticular tract in the monkey. Journal of Comparative Neurology, 1982, 207, 61-74.	1.6	130
104	Primary afferent axons in the tract of lissauer in the monkey. Journal of Comparative Neurology, 1981, 196, 431-442.	1.6	45
105	Sympathetic neurons in the cat spinal cord projecting to the stellate ganglion. Journal of Comparative Neurology, 1979, 185, 23-29.	1.6	80
106	Neurophysiological evidence for spatial summation in the CNS from unmyelinated afferent fibers. Brain Research, 1978, 153, 596-601.	2.2	7
107	Sympathetic preganglionic neurons of the cat spinal cord: horseradish peroxidase study. Brain Research, 1975, 91, 126-131.	2.2	136