List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8426194/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Organic-inorganic hybrid hole transport layers with SnS doping boost the performance of perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 637-645.                     | 12.9 | 9         |
| 2  | Film formation mechanisms in mixed-dimensional 2D/3D halide perovskite films revealed by in situ grazing-incidence wide-angle X-ray scattering. CheM, 2022, 8, 1067-1082.           | 11.7 | 16        |
| 3  | Internal Encapsulation for Lead Halide Perovskite Films for Efficient and Very Stable Solar Cells.<br>Advanced Energy Materials, 2022, 12, .                                        | 19.5 | 59        |
| 4  | Revealing key factors of efficient narrow-bandgap mixed lead-tin perovskite solar cells via numerical simulations and experiments. Nano Energy, 2022, 96, 107078.                   | 16.0 | 21        |
| 5  | Highly Efficient Quasiâ€2D Green Perovskite Lightâ€Emitting Diodes with Bifunctional Amino Acid.<br>Advanced Optical Materials, 2022, 10, .                                         | 7.3  | 14        |
| 6  | 2,3-Diphenylthieno[3,4- <i>b</i> ]pyrazines as Hole-Transporting Materials for Stable, High-Performance<br>Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 2118-2127.          | 17.4 | 27        |
| 7  | In Quest of Environmentally Stable Perovskite Solar Cells: A Perspective. Helvetica Chimica Acta, 2021, 104, .                                                                      | 1.6  | 15        |
| 8  | CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy Î <sup>3</sup> -rays. Nature Photonics, 2021, 15, 36-42.                                                   | 31.4 | 210       |
| 9  | Triple ation and Mixedâ€Halide Perovskite Single Crystal for Highâ€Performance Xâ€ray Imaging. Advanced<br>Materials, 2021, 33, e2006010.                                           | 21.0 | 163       |
| 10 | Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. Science Advances, 2021, 7, .                             | 10.3 | 81        |
| 11 | Tunable Broad Light Emission from 3D "Hollow―Bromide Perovskites through Defect Engineering.<br>Journal of the American Chemical Society, 2021, 143, 7069-7080.                     | 13.7 | 37        |
| 12 | Selective Capture Mechanism of Radioactive Thorium from Highly Acidic Solution by a Layered Metal Sulfide. ACS Applied Materials & Interfaces, 2021, 13, 37308-37315.               | 8.0  | 11        |
| 13 | Revealing the Mechanism of ï€ Aromatic Molecule as an Effective Passivator and Stabilizer in Highly<br>Efficient Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100249. | 5.8  | 11        |
| 14 | Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy, 2021, 90, 106608.  | 16.0 | 71        |
| 15 | Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion–Jacobson Perovskites Boost the Performance of Solar<br>Cells. Journal of the American Chemical Society, 2020, 142, 15049-15057.         | 13.7 | 103       |
| 16 | Three-Dimensional Lead Iodide Perovskitoid Hybrids with High X-ray Photoresponse. Journal of the<br>American Chemical Society, 2020, 142, 6625-6637.                                | 13.7 | 82        |
| 17 | Conventional Solvent Oxidizes Sn(II) in Perovskite Inks. ACS Energy Letters, 2020, 5, 1153-1155.                                                                                    | 17.4 | 127       |
| 18 | Water-Stable 1D Hybrid Tin(II) Iodide Emits Broad Light with 36% Photoluminescence Quantum Efficiency. Journal of the American Chemical Society, 2020, 142, 9028-9038.              | 13.7 | 57        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Two-Dimensional Dion–Jacobson Hybrid Lead Iodide Perovskites with Aromatic Diammonium Cations.<br>Journal of the American Chemical Society, 2019, 141, 12880-12890.                                                    | 13.7 | 241       |
| 20 | Benzodithiophene Holeâ€Transporting Materials for Efficient Tinâ€Based Perovskite Solar Cells. Advanced<br>Functional Materials, 2019, 29, 1905393.                                                                    | 14.9 | 49        |
| 21 | Seven-Layered 2D Hybrid Lead Iodide Perovskites. CheM, 2019, 5, 2593-2604.                                                                                                                                             | 11.7 | 79        |
| 22 | Compositional and Solvent Engineering in Dion–Jacobson 2D Perovskites Boosts Solar Cell Efficiency<br>and Stability. Advanced Energy Materials, 2019, 9, 1803384.                                                      | 19.5 | 219       |
| 23 | Improved Environmental Stability and Solar Cell Efficiency of (MA,FA)PbI <sub>3</sub> Perovskite<br>Using a Wide-Band-Gap 1D Thiazolium Lead Iodide Capping Layer Strategy. ACS Energy Letters, 2019, 4,<br>1763-1769. | 17.4 | 118       |
| 24 | Ethylenediammonium-Based "Hollow―Pb/Sn Perovskites with Ideal Band Gap Yield Solar Cells with<br>Higher Efficiency and Stability. Journal of the American Chemical Society, 2019, 141, 8627-8637.                      | 13.7 | 93        |
| 25 | Uniaxial Expansion of the 2D Ruddlesden–Popper Perovskite Family for Improved Environmental<br>Stability. Journal of the American Chemical Society, 2019, 141, 5518-5534.                                              | 13.7 | 193       |
| 26 | Combustion Synthesized Zinc Oxide Electronâ€Transport Layers for Efficient and Stable Perovskite<br>Solar Cells. Advanced Functional Materials, 2019, 29, 1900265.                                                     | 14.9 | 121       |
| 27 | Prospects for low-toxicity lead-free perovskite solar cells. Nature Communications, 2019, 10, 965.                                                                                                                     | 12.8 | 695       |
| 28 | Modern Processing and Insights on Selenium Solar Cells: The World's First Photovoltaic Device.<br>Advanced Energy Materials, 2019, 9, 1802766.                                                                         | 19.5 | 53        |
| 29 | Dynamical Transformation of Two-Dimensional Perovskites with Alternating Cations in the Interlayer<br>Space for High-Performance Photovoltaics. Journal of the American Chemical Society, 2019, 141,<br>2684-2694.     | 13.7 | 189       |
| 30 | Graphene-Modified Tin Dioxide for Efficient Planar Perovskite Solar Cells with Enhanced Electron<br>Extraction and Reduced Hysteresis. ACS Applied Materials & Interfaces, 2019, 11, 666-673.                          | 8.0  | 66        |
| 31 | "Unleaded―Perovskites: Status Quo and Future Prospects of Tinâ€Based Perovskite Solar Cells.<br>Advanced Materials, 2019, 31, e1803230.                                                                                | 21.0 | 345       |
| 32 | Hybrid Dion–Jacobson 2D Lead Iodide Perovskites. Journal of the American Chemical Society, 2018, 140,<br>3775-3783.                                                                                                    | 13.7 | 686       |
| 33 | Effective Carrierâ€Concentration Tuning of SnO <sub>2</sub> Quantum Dot Electronâ€6elective Layers<br>for Highâ€Performance Planar Perovskite Solar Cells. Advanced Materials, 2018, 30, e1706023.                     | 21.0 | 333       |
| 34 | Unraveling the Chemical Nature of the 3D "Hollow―Hybrid Halide Perovskites. Journal of the<br>American Chemical Society, 2018, 140, 5728-5742.                                                                         | 13.7 | 132       |
| 35 | Dopant-Free Tetrakis-Triphenylamine Hole Transporting Material for Efficient Tin-Based Perovskite<br>Solar Cells. Journal of the American Chemical Society, 2018, 140, 388-393.                                        | 13.7 | 163       |
| 36 | Myths and reality of HPbI3 in halide perovskite solar cells. Nature Communications, 2018, 9, 4785.                                                                                                                     | 12.8 | 238       |

| #  | Article                                                                                                                                                                                                                                                                                                               | IF        | CITATIONS              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|
| 37 | Resolving the Energy of Î <sup>3</sup> -Ray Photons with MAPbl <sub>3</sub> Single Crystals. ACS Photonics, 2018, 5, 4132-4138.                                                                                                                                                                                       | 6.6       | 100                    |
| 38 | Two-Dimensional Halide Perovskites Incorporating Straight Chain Symmetric Diammonium lons,<br>(NH <sub>3</sub> C <sub><i>m</i></sub> H <sub>2<i>m</i></sub> NH <sub>3</sub> )(CH <sub>3</sub> NH <sub<br>(<i>m</i> = 4–9; <i>n</i> = 1–4). Journal of the American Chemical Society, 2018, 140, 12226-12238.</sub<br> | >314s0b>) | <s<b>uas₄∢i&gt;n</s<b> |
| 39 | Diammonium Cations in the FASnl <sub>3</sub> Perovskite Structure Lead to Lower Dark Currents and<br>More Efficient Solar Cells. ACS Energy Letters, 2018, 3, 1470-1476.                                                                                                                                              | 17.4      | 114                    |
| 40 | Efficient Lead-Free Solar Cells Based on Hollow {en}MASnI <sub>3</sub> Perovskites. Journal of the American Chemical Society, 2017, 139, 14800-14806.                                                                                                                                                                 | 13.7      | 230                    |
| 41 | Junction Quality of SnO <sub>2</sub> -Based Perovskite Solar Cells Investigated by Nanometer-Scale<br>Electrical Potential Profiling. ACS Applied Materials & Interfaces, 2017, 9, 38373-38380.                                                                                                                       | 8.0       | 56                     |
| 42 | Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI<br><sub>3</sub> . Science Advances, 2017, 3, e1701293.                                                                                                                                                              | 10.3      | 325                    |
| 43 | Highly Efficient and Stable Planar Perovskite Solar Cells With Large‣cale Manufacture of Eâ€Beam<br>Evaporated SnO <sub>2</sub> Toward Commercialization. Solar Rrl, 2017, 1, 1700118.                                                                                                                                | 5.8       | 75                     |
| 44 | Millisecond-pulsed photonically-annealed tin oxide electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24110-24115.                                                                                                                                            | 10.3      | 41                     |
| 45 | Reducing Hysteresis and Enhancing Performance of Perovskite Solar Cells Using Lowâ€Temperature<br>Processed Yâ€Đoped SnO <sub>2</sub> Nanosheets as Electron Selective Layers. Small, 2017, 13, 1601769.                                                                                                              | 10.0      | 183                    |
| 46 | Optical properties and degradation monitoring of<br>CH <inf>3</inf> NH <inf>3</inf> PbI <inf>3</inf> . , 2016, , .                                                                                                                                                                                                    |           | 0                      |
| 47 | Performance enhancement of high temperature SnO <sub>2</sub> -based planar perovskite solar cells:<br>electrical characterization and understanding of the mechanism. Journal of Materials Chemistry A,<br>2016, 4, 8374-8383.                                                                                        | 10.3      | 156                    |
| 48 | Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 14276-14283.                                                                                                                                                 | 10.3      | 204                    |
| 49 | Improved Performance of Electroplated CZTS Thinâ€Film Solar Cells with Bifacial Configuration.<br>ChemSusChem, 2016, 9, 2149-2158.                                                                                                                                                                                    | 6.8       | 40                     |
| 50 | TiO <sub>2</sub> –ZnS Cascade Electron Transport Layer for Efficient Formamidinium Tin Iodide<br>Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 14998-15003.                                                                                                                            | 13.7      | 220                    |
| 51 | Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar<br>Perovskite Solar Cells. Advanced Materials, 2016, 28, 5214-5221.                                                                                                                                                  | 21.0      | 487                    |
| 52 | Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials<br>Chemistry A, 2016, 4, 3970-3990.                                                                                                                                                                           | 10.3      | 472                    |
| 53 | Photovoltaic Properties of Two-Dimensional<br>(CH <sub>3</sub> NH <sub>3</sub> ) <sub>2</sub> Pb(SCN) <sub>2</sub> I <sub>2</sub> Perovskite: A<br>Combined Experimental and Density Functional Theory Study. Journal of Physical Chemistry Letters,<br>2016. 7. 1213-1218.                                           | 4.6       | 135                    |
| 54 | Perovskite Solar Cells Based on Low-Temperature Processed Indium Oxide Electron Selective Layers.<br>ACS Applied Materials & Interfaces, 2016, 8, 8460-8466.                                                                                                                                                          | 8.0       | 128                    |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers. Nano Energy, 2016, 19, 88-97.                                                | 16.0 | 125       |
| 56 | Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 6730-6733.              | 13.7 | 1,045     |
| 57 | Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nature<br>Communications, 2015, 6, 6700.                                                                                   | 12.8 | 358       |
| 58 | Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24163-24168.                                 | 10.3 | 186       |
| 59 | Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers. Journal of Materials Chemistry A, 2015, 3, 23888-23894.                                         | 10.3 | 161       |
| 60 | Efficient planar perovskite solar cells using room-temperature vacuum-processed C <sub>60</sub><br>electron selective layers. Journal of Materials Chemistry A, 2015, 3, 17971-17976.                         | 10.3 | 100       |
| 61 | In situ growth of double-layer MoO3/MoS2 film from MoS2 for hole-transport layers in organic solar cell. Journal of Materials Chemistry A, 2014, 2, 2742.                                                     | 10.3 | 184       |
| 62 | Perovskite Solar Cell with an Efficient TiO <sub>2</sub> Compact Film. ACS Applied Materials &<br>Interfaces, 2014, 6, 15959-15965.                                                                           | 8.0  | 300       |
| 63 | In Situ Synthesis of NiS Nanowall Networks on Ni Foam as a TCO-Free Counter Electrode for<br>Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 5525-5530.                              | 8.0  | 96        |
| 64 | Low-temperature synthesis of size-controllable anatase TiO2 microspheres and interface optimization of bi-layer anodes for high efficiency dye sensitized solar cells. Electrochimica Acta, 2014, 137, 17-25. | 5.2  | 14        |