Cailing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8425068/publications.pdf

Version: 2024-02-01

52	2,805	30	51
papers	citations	h-index	g-index
52	52	52	2994
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Laserâ€Assisted Synthesis of Ag ₂ Sâ€Quantumâ€Dotâ€inâ€Perovskite Matrix and Its Application in Broadband Photodetectors. Advanced Optical Materials, 2022, 10, 2101535.	7.3	10
2	Over 18% ternary polymer solar cells enabled by a terpolymer as the third component. Nano Energy, 2022, 92, 106681.	16.0	97
3	Oriented Twoâ€Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. Angewandte Chemie, 2022, 134, .	2.0	10
4	Perovskite-Nanosheet Sensitizer for Highly Efficient Organic X-ray Imaging Scintillator. ACS Energy Letters, 2022, 7, 10-16.	17.4	72
5	Highly dispersed Pd nanoparticles confined in ZSM-5 zeolite crystals for selective hydrogenation of cinnamaldehyde. Microporous and Mesoporous Materials, 2022, 330, 111566.	4.4	9
6	Oriented Twoâ€Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. Angewandte Chemie - International Edition, 2022, 61, .	13.8	50
7	Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nature Materials, 2022, 21, 740-747.	27.5	92
8	Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation. Science Advances, 2022, 8, eabm6741.	10.3	46
9	Interface Engineering of Biâ€Fluorescence Molecules for Highâ€Performance Data Encryption and Ultralow UV‣ight Detection. Advanced Optical Materials, 2022, 10, .	7.3	5
10	Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nature Communications, 2022, 13, .	12.8	101
11	Quantitative Evaluation of Carrier Dynamics in Full-Spectrum Responsive Metallic Znln ₂ S ₄ with Indium Vacancies for Boosting Photocatalytic CO ₂ Reduction. Nano Letters, 2022, 22, 4970-4978.	9.1	54
12	Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes. Journal of the American Chemical Society, 2022, 144, 12400-12409.	13.7	62
13	A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. CheM, 2021, 7, 699-714.	11.7	197
14	Highly Active Heterogeneous Catalyst for Ethylene Dimerization Prepared by Selectively Doping Ni on the Surface of a Zeolitic Imidazolate Framework. Journal of the American Chemical Society, 2021, 143, 7144-7153.	13.7	42
15	Nano-Confinement Effects on Structural Development and Organic Solvent-Induced Swelling of Ultrathin Carbon Molecular Sieve Films. ACS Applied Materials & Interfaces, 2021, 13, 21765-21774.	8.0	7
16	Tumor-Associated-Macrophage-Membrane-Coated Nanoparticles for Improved Photodynamic Immunotherapy. Nano Letters, 2021, 21, 5522-5531.	9.1	106
17	[Cu ₃₆ H ₁₀ (PET) ₂₄ (PPh ₃) ₆ Cl ₂] Reveals Surface Vacancy Defects in Ligand-Stabilized Metal Nanoclusters. Journal of the American Chemical Society, 2021, 143, 11026-11035.	13.7	46
18	Air-Resistant Lead Halide Perovskite Nanocrystals Embedded into Polyimide of Intrinsic Microporosity. Energy Material Advances, 2021, 2021, .	11.0	21

#	Article	IF	Citations
19	Carbon nitride derived nitrogen-doped carbon nanosheets for high-rate lithium-ion storage. Chemical Engineering Science, 2021, 241, 116709.	3.8	34
20	A Lowâ€Strain Phosphate Cathode for Highâ€Rate and Ultralong Cycleâ€Life Potassiumâ€lon Batteries. Angewandte Chemie, 2021, 133, 25779-25786.	2.0	8
21	A Lowâ€Strain Phosphate Cathode for Highâ€Rate and Ultralong Cycleâ€Life Potassiumâ€lon Batteries. Angewandte Chemie - International Edition, 2021, 60, 25575-25582.	13.8	137
22	lonic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodineâ€Capture Capacity. Angewandte Chemie - International Edition, 2021, 60, 22432-22440.	13.8	148
23	lonic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodineâ€Capture Capacity. Angewandte Chemie, 2021, 133, 22606-22614.	2.0	9
24	Efficient wide-spectrum photocatalytic overall water splitting over ultrathin molecular nickel phthalocyanine/BiVO4 Z-scheme heterojunctions without noble metals. Applied Catalysis B: Environmental, 2021, 295, 120260.	20.2	49
25	Phase and morphology evolution of NaGdF4:Yb,Er nanocrystals with power density-dependent upconversion fluorescence via one-step microwave-assisted solvothermal method. Journal of Luminescence, 2021, 239, 118283.	3.1	1
26	Cyanamide Passivation Enables Robust Elemental Imaging of Metal Halide Perovskites at Atomic Resolution. Journal of Physical Chemistry Letters, 2021, 12, 10402-10409.	4.6	15
27	Hierarchical porous carbon@PbO1-x composite for high-performance lead-carbon battery towards renewable energy storage. Energy, 2020, 193, 116675.	8.8	34
28	Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Science Advances, 2020, 6, .	10.3	182
29	Bortezomib-Encapsulated CuS/Carbon Dot Nanocomposites for Enhanced Photothermal Therapy via Stabilization of Polyubiquitinated Substrates in the Proteasomal Degradation Pathway. ACS Nano, 2020, 14, 10688-10703.	14.6	88
30	Direct Pyrolysis of Supermolecules: An Ultrahigh Edgeâ€Nitrogen Doping Strategy of Carbon Anodes for Potassiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2000732.	21.0	164
31	Methanol-to-Olefin Conversion over Small-Pore DDR Zeolites: Tuning the Propylene Selectivity via the Olefin-Based Catalytic Cycle. ACS Catalysis, 2020, 10, 3009-3017.	11.2	12
32	Engineering effective structural defects of metal–organic frameworks to enhance their catalytic performances. Journal of Materials Chemistry A, 2020, 8, 4464-4472.	10.3	66
33	Selective Acetylene Adsorption within an Imino-Functionalized Nanocage-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 5999-6006.	8.0	33
34	Microwave Assisted Hydrothermal Way Towards Highly Crystalized N-Doped Carbon Quantum Dots and Their Oxygen Reduction Performance. Chemical Research in Chinese Universities, 2019, 35, 171-178.	2.6	13
35	Saccharomyces-derived carbon dots for biosensing pH and vitamin B 12. Talanta, 2019, 195, 117-126.	5.5	52
36	Microwave-assisted synthesis of highly water-soluble LuVO4:Eu nanoparticles as anti-counterfeit fluorescent ink. Journal of Luminescence, 2019, 206, 560-564.	3.1	19

3

#	Article	IF	CITATIONS
37	Mercaptopropionic Acid-Capped Wurtzite Cu ₉ Sn ₂ Se ₉ Nanocrystals as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 1810-1818.	8.0	29
38	Rational design of CNTs with encapsulated Co nanospheres as superior acid- and base-resistant microwave absorbers. Dalton Transactions, 2018, 47, 11554-11562.	3.3	17
39	Sub-10 nm Sr ₂ LuF ₇ :Yb/Er@Sr ₂ GdF ₇ @SrF ₂ Up-Conversion Nanocrystals for Up-Conversion Luminescence–Magnetic Resonance–Computed Tomography Trimodal Bioimaging. ACS Applied Materials & Interfaces, 2017, 9, 5748-5756.	8.0	25
40	Application of Cu ₃ InSnSe ₅ Heteronanostructures as Counter Electrodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18046-18053.	8.0	23
41	One-dimensional hierarchically porous carbon from biomass with high capacitance as supercapacitor materials. Microporous and Mesoporous Materials, 2017, 251, 77-82.	4.4	59
42	Facile Synthesis of Highly Waterâ€Soluble Lanthanideâ€Doped t‣aVO ₄ NPs for Antifake Ink and Latent Fingermark Detection. Small, 2017, 13, 1702305.	10.0	56
43	Facile Synthesis of Water-Soluble YVO < sub > 4 < / sub > : Eu Nanoparticles for Cu < sup > 2 + < / sup > Detection in Aqueous Solution. ChemistrySelect, 2016, 1, 1417-1420.	1.5	18
44	Multifunctional Luminescent Porous Organic Polymer for Selectively Detecting Iron Ions and 1,4-Dioxane via Luminescent Turn-off and Turn-on Sensing. ACS Applied Materials & Enterfaces, 2016, 8, 24097-24103.	8.0	78
45	Current Advances in Lanthanideâ€Doped Upconversion Nanostructures for Detection and Bioapplication. Advanced Science, 2016, 3, 1600029.	11.2	147
46	Porous Pt Nanotubes with High Methanol Oxidation Electrocatalytic Activity Based on Original Bamboo-Shaped Te Nanotubes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16147-16153.	8.0	52
47	Waterâ€Soluble, Monodisperse, Lanthanideâ€Doped Y(Gd)VO ₄ Nanocrystals as Promising Multimodal Bioprobe. European Journal of Inorganic Chemistry, 2015, 2015, 3108-3115.	2.0	15
48	A facile synthesis of water-soluble BaYF5:Ln3+ NCs with excellent luminescent properties as promising contrast agent for dual-modal bioimaging. Inorganic Chemistry Communication, 2015, 62, 11-14.	3.9	6
49	Colloidal Synthesis of Quaternary Wurtzite Cu ₃ AlSnS ₅ Nanocrystals and Their Photoresponsive Properties. ChemPlusChem, 2015, 80, 652-655.	2.8	2
50	Histidine-Derived Nontoxic Nitrogen-Doped Carbon Dots for Sensing and Bioimaging Applications. Langmuir, 2014, 30, 13542-13548.	3 . 5	141
51	A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1a^xSex)2 nanocrystals. Nanoscale, 2014, 6, 6782.	5.6	42
52	Applications of in situ electron microscopy in oxygen electrocatalysis. , 0, , .		4