
Ya-Huei Kuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8423629/publications.pdf Version: 2024-02-01

VA-HUELKUO

#	Article	IF	CITATIONS
1	Roadmap on plasticity and epigenetics in cancer. Physical Biology, 2022, 19, 031501.	1.8	8
2	Programmable siRNA pro-drugs that activate RNAi activity in response to specific cellular RNA biomarkers. Molecular Therapy - Nucleic Acids, 2022, 27, 797-809.	5.1	9
3	MicroRNA networks in FLT3-ITD acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112482119.	7.1	5
4	Disruption of dNTP homeostasis by ribonucleotide reductase hyperactivation overcomes AML differentiation blockade. Blood, 2022, 139, 3752-3770.	1.4	12
5	Dynamic patterns of microRNA expression during acute myeloid leukemia state-transition. Science Advances, 2022, 8, eabj1664.	10.3	9
6	Comparison of cell state models derived from single-cell RNA sequencing data: graph versus multi-dimensional space. Mathematical Biosciences and Engineering, 2022, 19, 8505-8536.	1.9	2
7	Cytoplasmic DROSHA and non-canonical mechanisms of MiR-155 biogenesis in FLT3-ITD acute myeloid leukemia. Leukemia, 2021, 35, 2285-2298.	7.2	10
8	Treatment-induced arteriolar revascularization and miR-126 enhancement in bone marrow niche protect leukemic stem cells in AML. Journal of Hematology and Oncology, 2021, 14, 122.	17.0	13
9	Targeting miR-126 in inv(16) acute myeloid leukemia inhibits leukemia development and leukemia stem cell maintenance. Nature Communications, 2021, 12, 6154.	12.8	27
10	Targeting miRâ€126 disrupts maintenance of myelodysplastic syndrome stem and progenitor cells. Clinical and Translational Medicine, 2021, 11, e610.	4.0	4
11	Targeting cell membrane HDM2: A novel therapeutic approach for acute myeloid leukemia. Leukemia, 2020, 34, 75-86.	7.2	10
12	State-Transition Analysis of Time-Sequential Gene Expression Identifies Critical Points That Predict Development of Acute Myeloid Leukemia. Cancer Research, 2020, 80, 3157-3169.	0.9	25
13	Requirement of GTP binding for TIFâ€90â€regulated ribosomal RNA synthesis and oncogenic activities in human colon cancer cells. Journal of Cellular Physiology, 2020, 235, 7567-7579.	4.1	4
14	Microrna-142 Deficiency Promotes Chronic Myeloid Leukemia (CML) Transformation from Chronic Phase (CP) to Blast Crisis (BC). Blood, 2020, 136, 4-4.	1.4	0
15	PRMT1-mediated FLT3 arginine methylation promotes maintenance of FLT3-ITD+ acute myeloid leukemia. Blood, 2019, 134, 548-560.	1.4	58
16	Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nature Medicine, 2018, 24, 450-462.	30.7	123
17	Aging in a Relativistic Biological Space-Time. Frontiers in Cell and Developmental Biology, 2018, 6, 55.	3.7	4
18	SIRT1 Activation Disrupts Maintenance of Myelodysplastic Syndrome Stem and Progenitor Cells by Restoring TET2 Function. Cell Stem Cell, 2018, 23, 355-369.e9.	11.1	68

ΥΑ-Ηυει ΚυΟ

#	Article	IF	CITATIONS
19	HDAC8 regulates long-term hematopoietic stem-cell maintenance under stress by modulating p53 activity. Blood, 2017, 130, 2619-2630.	1.4	41
20	Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood, 2016, 127, 1687-1700.	1.4	70
21	CBFβ-SMMHC creates aberrant megakaryocyte-erythroid progenitors prone to leukemia initiation in mice. Blood, 2016, 128, 1503-1515.	1.4	21
22	Regain control of p53: Targeting leukemia stem cells by isoform-specificÂHDAC inhibition. Experimental Hematology, 2016, 44, 315-321.	0.4	22
23	HDAC8 Inhibition Specifically Targets Inv(16) Acute Myeloid Leukemic Stem Cells by Restoring p53 Acetylation. Cell Stem Cell, 2015, 17, 597-610.	11.1	75
24	Knockdown (KD) of Mir-126 Expression Enhances Tyrosine Kinase Inhibitor (TKI)-Mediated Targeting of Chronic Myelogenous Leukemia (CML) Stem Cells. Blood, 2015, 126, 51-51.	1.4	2
25	Pushing the Limits: Defeating Leukemia Stem Cells by Depleting Telomerase. Cell Stem Cell, 2014, 15, 673-675.	11.1	6
26	Push and release. OncoImmunology, 2014, 3, e27441.	4.6	6
27	Leukemia cell–targeted STAT3 silencing and TLR9 triggering generate systemic antitumor immunity. Blood, 2014, 123, 15-25.	1.4	85
28	SIRT1 Activation by a c-MYC Oncogenic Network Promotes the Maintenance and Drug Resistance of Human FLT3-ITD Acute Myeloid Leukemia Stem Cells. Cell Stem Cell, 2014, 15, 431-446.	11.1	187
29	Inhibition of HDAC8 Reactivates p53 and Abrogates Leukemia Stem Cell Activity in CBFÎ ² -SMMHC Associated Acute Myeloid Leukemia. Blood, 2014, 124, 363-363.	1.4	8
30	CBFβ-SMMHC Impairs Erythroid Differentiation and Induces Expansion of Aberrant Megakaryocytic/Erythroid Progenitors Capable of Leukemia Initiation. Blood, 2014, 124, 2149-2149.	1.4	0
31	The Src and c-Kit kinase inhibitor dasatinib enhances p53-mediated targeting of human acute myeloid leukemia stem cells by chemotherapeutic agents. Blood, 2013, 122, 1900-1913.	1.4	86
32	Alcam Regulates Long-Term Hematopoietic Stem Cell Engraftment and Self-Renewal. Stem Cells, 2013, 31, 560-571.	3.2	34
33	In Vivo Targeting Of Acute Myeloid Leukemia Using CpG-Stat3 siRNA Results In T Cell-Dependent Tumor Eradication. Blood, 2013, 122, 4212-4212.	1.4	1
34	Selective Targeting Of Inv(16)+ AML Stem Progenitor Cells By Inhibiting HDAC8. Blood, 2013, 122, 224-224.	1.4	0
35	Selective Anti Leukemic Activity Of Low Dose Decitabine In Combination With Ruxolitinib Against Stem/Progenitor Cells From Elderly AML Patients. Blood, 2013, 122, 2690-2690.	1.4	0
36	Aberrant Megakaryocytic/Erythroid Progenitors Contributes To Transformation Of Cbfb-SMMHC Induced Acute Myeloid Leukemia. Blood, 2013, 122, 1652-1652.	1.4	0

ΥΑ-Ηυει ΚυΟ

#	Article	IF	CITATIONS
37	Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling. Blood, 2012, 120, 868-879.	1.4	47
38	SFK Inhibition with Dasatinib Results In Selective Targeting of Primitive Human Acute Myeloid Leukemia Stem and Progenitor Cells Blood, 2010, 116, 1053-1053.	1.4	0
39	Runx2 induces acute myeloid leukemia in cooperation with Cbfβ-SMMHC in mice. Blood, 2009, 113, 3323-3332.	1.4	74
40	Cbfβ-SMMHC impairs differentiation of common lymphoid progenitors and reveals an essential role for RUNX in early B-cell development. Blood, 2008, 111, 1543-1551.	1.4	26
41	Cbfβ-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell, 2006, 9, 57-68.	16.8	124
42	Cbfβ Reduces Cbfβ-SMMHC–Associated Acute Myeloid Leukemia in Mice. Cancer Research, 2006, 66, 11214-11218.	0.9	12
43	Plag1 and Plagl2 are oncogenes that induce acute myeloid leukemia in cooperation with Cbfb-MYH11. Blood, 2005, 105, 2900-2907.	1.4	115
44	Specific cell surface binding sites shared by human Pro-IGF-I Eb-peptides and rainbow trout Pro-IGF-I Ea-4-peptide. General and Comparative Endocrinology, 2003, 132, 231-240.	1.8	17
45	Novel Activities of Pro-IGF-I E Peptides: Regulation of Morphological Differentiation and Anchorage-Independent Growth in Human Neuroblastoma Cells. Experimental Cell Research, 2002, 280, 75-89.	2.6	49
46	Novel biological activities of the fish pro-IGF-I E-peptides: studies on effects of fish pro-IGF-I E-peptide on morphological change, anchorage-dependent cell division, and invasiveness in tumor cells. General and Comparative Endocrinology, 2002, 126, 342-351.	1.8	22