Markus Riessland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8422389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Human Molecular Genetics, 2010, 19, 1492-1506.	2.9	195
2	<i>PLS3</i> Mutations in X-Linked Osteoporosis with Fractures. New England Journal of Medicine, 2013, 369, 1529-1536.	27.0	171
3	Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis. American Journal of Human Genetics, 2017, 100, 297-315.	6.2	156
4	The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype. American Journal of Human Genetics, 2016, 99, 647-665.	6.2	154
5	Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy. Journal of Clinical Investigation, 2014, 124, 1821-1834.	8.2	151
6	In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. Journal of Neurochemistry, 2006, 98, 193-202.	3.9	140
7	SMN regulates axonal local translation via miR-183/mTOR pathway. Human Molecular Genetics, 2014, 23, 6318-6331.	2.9	125
8	The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells. Human Genetics, 2006, 120, 101-110.	3.8	117
9	Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition. Human Molecular Genetics, 2009, 18, 304-317.	2.9	116
10	Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality. Human Molecular Genetics, 2013, 22, 1328-1347.	2.9	116
11	LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate. Human Molecular Genetics, 2009, 18, 3645-3658.	2.9	100
12	Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cell Stem Cell, 2019, 25, 514-530.e8.	11.1	96
13	Reversible molecular pathology of skeletal muscle in spinal muscular atrophy. Human Molecular Genetics, 2011, 20, 4334-4344.	2.9	89
14	How genetic modifiers influence the phenotype of spinal muscular atrophy and suggest future therapeutic approaches. Current Opinion in Genetics and Development, 2013, 23, 330-338.	3.3	79
15	Neuromuscular defects and breathing disorders in a new mouse model of spinal muscular atrophy. Neurobiology of Disease, 2010, 38, 125-135.	4.4	71
16	Severe SMA mice show organ impairment that cannot be rescued by therapy with the HDACi JNJ-26481585. European Journal of Human Genetics, 2013, 21, 643-652.	2.8	55
17	Deficiency of the splicing factor Sfrs10 results in early embryonic lethality in mice and has no impact on full-length SMN/Smn splicing. Human Molecular Genetics, 2010, 19, 2154-2167.	2.9	53
18	CHP1 reduction ameliorates spinal muscular atrophy pathology by restoring calcineurin activity and endocytosis. Brain, 2018, 141, 2343-2361.	7.6	49

MARKUS RIESSLAND

#	Article	IF	CITATIONS
19	Biallelic CHP1 mutation causes human autosomal recessive ataxia by impairing NHE1 function. Neurology: Genetics, 2018, 4, e209.	1.9	23
20	Investigational therapies for the treatment of spinal muscular atrophy. Expert Opinion on Investigational Drugs, 2015, 24, 867-881.	4.1	19
21	Histone Acetylation as a Potential Therapeutic Target in Motor Neuron Degenerative Diseases. Current Pharmaceutical Design, 2013, 19, 5093-5104.	1.9	16
22	Increasing SMN levels using the histone deacetylase inhibitor SAHA ameliorates defects in skeletal muscle microvasculature in a mouse model of severe spinal muscular atrophy. Neuroscience Letters, 2013, 544, 100-104.	2.1	13
23	Age-Related Midbrain Inflammation and Senescence in Parkinson's Disease. Frontiers in Aging Neuroscience, 0, 14, .	3.4	12
24	Reactive Dopamine Leads to Triple Trouble in Nigral Neurons. Biochemistry, 2017, 56, 6409-6410.	2.5	6
25	Drug discovery for spinal muscular atrophy. Expert Opinion on Drug Discovery, 2007, 2, 437-451.	5.0	4
26	Cellular Senescence in Health, Disease and Aging: Blessing or Curse?. Life, 2021, 11, 541.	2.4	4
27	Is there hope for spinal muscular atrophy synthetic pharmacotherapy?. Expert Opinion on Pharmacotherapy, 2019, 20, 1049-1052.	1.8	2
28	PLS3 mutations in X-linked osteoporosis with fractures. Bone Abstracts, 0, , .	0.0	0