Yating Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8421556/publications.pdf Version: 2024-02-01

ΧΑΤΙΝΙC Η

#	Article	IF	CITATIONS
1	Ferroelectricity of CH ₃ NH ₃ PbI ₃ Perovskite. Journal of Physical Chemistry Letters, 2015, 6, 1155-1161.	4.6	295
2	Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy, 2017, 39, 162-171.	16.0	273
3	Highâ€Performance Flexible Solid‣tate Ni/Fe Battery Consisting of Metal Oxides Coated Carbon Cloth/Carbon Nanofiber Electrodes. Advanced Energy Materials, 2016, 6, 1601034.	19.5	262
4	Controllable MnCo ₂ S ₄ nanostructures for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 7494-7506.	10.3	198
5	Allâ€Solidâ€State Fiber Supercapacitors with Ultrahigh Volumetric Energy Density and Outstanding Flexibility. Advanced Energy Materials, 2019, 9, 1802753.	19.5	197
6	Flexible Asymmetric Supercapacitor Based on Structureâ€Optimized Mn ₃ O ₄ /Reduced Graphene Oxide Nanohybrid Paper with High Energy and Power Density. Advanced Functional Materials, 2015, 25, 7291-7299.	14.9	146
7	Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. Journal of Materials Chemistry A, 2014, 2, 11753.	10.3	127
8	Conformally deposited NiO on a hierarchical carbon support for high-power and durable asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23283-23288.	10.3	103
9	Hybrid Fe ₂ O ₃ Nanoparticle Clusters/rGO Paper as an Effective Negative Electrode for Flexible Supercapacitors. Chemistry of Materials, 2016, 28, 7296-7303.	6.7	95
10	Manganeseâ€Oxideâ€Based Electrode Materials for Energy Storage Applications: How Close Are We to the Theoretical Capacitance?. Advanced Materials, 2018, 30, e1802569.	21.0	94
11	Enlarged Interlayer Spacing in Cobalt–Manganese Layered Double Hydroxide Guiding Transformation to Layered Structure for High Supercapacitance. ACS Applied Materials & Interfaces, 2019, 11, 23236-23243.	8.0	85
12	Ultrafine Molybdenum Carbide Nanocrystals Confined in Carbon Foams via a Colloid onfinement Route for Efficient Hydrogen Production. Small Methods, 2018, 2, 1700396.	8.6	83
13	2D Metal–Organic Frameworks Derived Nanocarbon Arrays for Substrate Enhancement in Flexible Supercapacitors. Small, 2018, 14, e1702641.	10.0	80
14	Activation of sucrose-derived carbon spheres for high-performance supercapacitor electrodes. RSC Advances, 2015, 5, 9307-9313.	3.6	73
15	Nanoflakes of Ni–Co LDH and Bi ₂ O ₃ Assembled in 3D Carbon Fiber Network for High-Performance Aqueous Rechargeable Ni/Bi Battery. ACS Applied Materials & Interfaces, 2017, 9, 26008-26015.	8.0	71
16	Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Advances, 2014, 4, 26398-26406.	3.6	69
17	MOFâ€Derived Vertically Aligned Mesoporous Co ₃ O ₄ Nanowires for Ultrahigh Capacity Lithiumâ€Ion Batteries Anodes. Advanced Materials Interfaces, 2018, 5, 1800222. 	3.7	58
18	Strong Charge Transfer at 2H–1T Phase Boundary of MoS ₂ for Superb Highâ€Performance Energy Storage. Small, 2019, 15, e1900131.	10.0	53

YATING HU

#	Article	IF	CITATIONS
19	Cu and Co nanoparticle-Co-decorated N-doped graphene nanosheets: a high efficiency bifunctional electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 12851-12858.	10.3	50
20	Tuning the porous texture and specific surface area of nanoporous carbons for supercapacitor electrodes by adjusting the hydrothermal synthesis temperature. Journal of Materials Chemistry A, 2013, 1, 12962.	10.3	42
21	Microwave – assisted hydrothermal synthesis of nanocrystal β-Ni(OH) ₂ for supercapacitor applications. CrystEngComm, 2016, 18, 3256-3264.	2.6	42
22	3D hierarchical SnO ₂ @Ni(OH) ₂ core–shell nanowire arrays on carbon cloth for energy storage application. Journal of Materials Chemistry A, 2015, 3, 9538-9542.	10.3	33
23	Doping cobalt hydroxide nanowires for better supercapacitor performance. Acta Materialia, 2015, 84, 20-28.	7.9	30
24	MnOx nanosheets for improved electrochemical performances through bilayer nano-architecting. Journal of Power Sources, 2015, 286, 394-399.	7.8	25
25	Controllable structure transitions of Mn ₃ O ₄ nanomaterials and their effects on electrochemical properties. Nanoscale Horizons, 2017, 2, 326-332.	8.0	25
26	MOF-derived manganese oxide/carbon nanocomposites with raised capacitance for stable asymmetric supercapacitor. RSC Advances, 2020, 10, 34403-34412.	3.6	24
27	Controlled growth of a metal–organic framework on gold nanoparticles. CrystEngComm, 2016, 18, 5262-5266.	2.6	23
28	Guided Assembly of Microporous/Mesoporous Manganese Phosphates by Bifunctional Organophosphonic Acid Etching and Templating. Advanced Materials, 2019, 31, e1901124.	21.0	15
29	Direct Pyrolysis of a Manganeseâ€Triazolate Metal–Organic Framework into Airâ€Stable Manganese Nitride Nanoparticles. Advanced Science, 2021, 8, 2003212.	11.2	13
30	Nickel and Lanthanum Hydroxide Nanocomposites with Much Improved Electrochemical Performance for Supercapacitors. Journal of the American Ceramic Society, 2017, 100, 247-256.	3.8	11
31	Two-step pyrolysis of Mn MIL-100 MOF into MnO nanoclusters/carbon and the effect of N-doping. Journal of Materials Chemistry A, 2022, 10, 8172-8177.	10.3	7
32	Carbon and Metal Oxides Based Nanomaterials for Flexible High Performance Asymmetric Supercapacitors. Springer Theses, 2018, , .	0.1	5
33	High-Performance Energy Storage: Manganese-Oxide-Based Electrode Materials for Energy Storage Applications: How Close Are We to the Theoretical Capacitance? (Adv. Mater. 47/2018). Advanced Materials, 2018, 30, 1870364.	21.0	2
34	Nitrogen Doping of Mesoporous Carbon Materials. Springer Theses, 2018, , 35-47.	0.1	1
35	Mn3O4 Nanomaterials with Controllable Morphology and Particle Sizes. Springer Theses, 2018, , 63-73.	0.1	0
36	Improving the Surface Area and Loading Mass of MnOx Based Electrode Materials. Springer Theses, 2018, , 49-61.	0.1	0

YATING HU

#	Article	IF	CITATIONS
37	Microâ€∤Mesoporous Materials: Guided Assembly of Microporous/Mesoporous Manganese Phosphates by Bifunctional Organophosphonic Acid Etching and Templating (Adv. Mater. 25/2019). Advanced Materials, 2019, 31, 1970182.	21.0	0
38	Optimized Hybrid Mn3O4 Nanofiber/rGO Paper for High Performance Flexible ASCs. Springer Theses, 2018, , 75-90.	0.1	0
39	Hybrid Fe2O3 Nanoparticle Clusters/rGO Paper for Flexible Supercapacitors. Springer Theses, 2018, , 91-104.	0.1	0