Qunting Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8421334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic skin layer with carboxyl and electron-withdrawing nitro groups to chemically bind with residual Li and Ni cations on single-crystal LiNi0.8Co0.1Mn0.1O2. Electrochimica Acta, 2022, 404, 139743.	5.2	6
2	In Situ Polymerized and Imidized Si@Polyimide Microcapsules with Flexible Solidâ€Electrolyte Interphase and Enhanced Electrochemical Activity for Liâ€Storage. ChemElectroChem, 2022, 9, .	3.4	5
3	Yolkâ€Shell Sb ₂ S ₃ @C Hollow Microspheres with Controllable Interiors for High Space Utilization and Structural Stability of Naâ€Storage. ChemNanoMat, 2022, 8, .	2.8	6
4	Overcoming the fundamental challenge of PVDF binder use with silicon anodes with a super-molecular nano-layer. Journal of Materials Chemistry A, 2021, 9, 1541-1551.	10.3	45
5	Molecular design of a multifunctional binder <i>via</i> grafting and crosslinking for high performance silicon anodes. Journal of Materials Chemistry A, 2021, 9, 8416-8424.	10.3	30
6	Electrolyte Design Enabling a Highâ€ S afety and Highâ€Performance Si Anode with a Tailored Electrode–Electrolyte Interphase. Advanced Materials, 2021, 33, e2103178.	21.0	135
7	Organic salts with unsaturated bond and diverse anions as substrates for solid electrolyte interphase on graphite anodes. Carbon, 2021, 183, 108-118.	10.3	11
8	1-Hydroxyethylidene-1, 1-diphosphonic acid: A multifunctional interface modifier for eliminating HF in silicon anode. Energy Storage Materials, 2021, 42, 493-501.	18.0	23
9	A novel covalently grafted binder through in-situ polymerization for high-performance Si-based lithium-ion batteries. Electrochimica Acta, 2021, 400, 139442.	5.2	13
10	Hierarchically assembled LiNi0.8Co0.1Mn0.1O2 secondary particles with high exposure of {010} plane synthesized via co-precipitation method. Electrochimica Acta, 2020, 329, 135057.	5.2	37
11	Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries. Carbon, 2020, 159, 390-400.	10.3	40
12	Implanting an electrolyte additive on a single crystal Ni-rich cathode surface for improved cycleability and safety. Journal of Materials Chemistry A, 2020, 8, 24579-24589.	10.3	31
13	In Situ Transformed Solid Electrolyte Interphase by Implanting a 4-Vinylbenzoic Acid Nanolayer on the Natural Graphite Surface. ACS Applied Materials & Interfaces, 2020, 12, 33408-33420.	8.0	7
14	Anchoring Interfacial Nickel Cations on Single-Crystal LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Surface via Controllable Electron Transfer. ACS Energy Letters, 2020, 5, 2421-2433.	17.4	109
15	Simultaneously formed and embedding-type ternary MoSe ₂ /MoO ₂ /nitrogen-doped carbon for fast and stable Na-ion storage. Nanoscale Advances, 2020, 2, 1878-1885.	4.6	9
16	Dynamic bonded supramolecular binder enables high-performance silicon anodes in lithium-ion batteries. Journal of Power Sources, 2020, 463, 228208.	7.8	57
17	Submicrospherical and Porous Bi 2 S 3 Protected by Nitrogenâ€Doped Carbon for Practical Anode Fabrication of Li″on Batteries. ChemNanoMat, 2020, 6, 598-603.	2.8	6
18	Fluoro-Ether as a Bifunctional Interphase Electrolyte Additive with Graphite/LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Full Cell. ACS Applied Energy Materials, 2019, 2, 6404-6416.	5.1	19

#	Article	IF	CITATIONS
19	A high-capacity organic anode with self-assembled morphological transformation for green lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 22621-22630.	10.3	24
20	Suppressing the dry bed-lake fracture of silicon anode via dispersant modification in electrode processing. Electrochimica Acta, 2019, 319, 682-689.	5.2	12
21	1D Hematite-[α-Fe2O3]-nanorods prepared by green fabrication for supercapacitor electrodes. Electrochemical Energy Technology, 2019, 5, 1-6.	1.2	12
22	Simultaneous growth of SiOx/carbon bilayers on Si nanoparticles for improving cycling stability. Electrochimica Acta, 2019, 323, 134840.	5.2	24
23	In Situ Development of Elastic Solid Electrolyte Interphase via Nanoregulation and Self-Polymerization of Sodium Itaconate on Graphite Surface. ACS Applied Energy Materials, 2019, 2, 1336-1347.	5.1	11
24	Dimethylacrylamide, a novel electrolyte additive, can improve the electrochemical performances of silicon anodes in lithium-ion batteries. RSC Advances, 2019, 9, 435-443.	3.6	25
25	Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds?. Journal of Materials Chemistry A, 2019, 7, 14937-14970.	10.3	116
26	Nanoisland-like MoO ₂ Embedded in N-Doped Carbon via Mo–N Bonds for Li-Ion Storage. ACS Applied Nano Materials, 2019, 2, 1883-1889.	5.0	29
27	Correlation between the physical parameters and the electrochemical performance of a silicon anode in lithium-ion batteries. Journal of Materiomics, 2019, 5, 164-175.	5.7	33
28	A Facile Synthesis of Hematite Nanorods from Rice Starch and Their Application to Pb(II) Ions Removal. ChemistrySelect, 2019, 4, 3730-3736.	1.5	10
29	Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries. Journal of Alloys and Compounds, 2019, 787, 928-934.	5.5	32
30	A trimethylol melamine functionalized polyvinyl alcohol network for high performance nano-silicon anodes. Journal of Materials Chemistry A, 2019, 7, 26029-26038.	10.3	33
31	Hollow Structured Carbon@FeSe Nanocomposite as a Promising Anode Material for Liâ€lon Batteries. ChemElectroChem, 2019, 6, 1393-1399.	3.4	12
32	The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder. Electrochimica Acta, 2018, 269, 405-414.	5.2	76
33	Ultrasmall Fe ₃ O ₄ nanodots within N-doped carbon frameworks from MOFs uniformly anchored on carbon nanowebs for boosting Li-ion storage. Journal of Materials Chemistry A, 2018, 6, 3659-3666.	10.3	74
34	Engineered Si@alginate microcapsule-graphite composite electrode for next generation high-performance lithium-ion batteries. Electrochimica Acta, 2018, 270, 480-489.	5.2	24
35	A novel maleic acid/graphite composite anode for lithium ion batteries with high energy and power density. Carbon, 2018, 132, 420-429.	10.3	34
36	Optimizing solid electrolyte interphase on graphite anode by adjusting the electrolyte solution structure with ionic liquid. Electrochimica Acta, 2018, 260, 640-647.	5.2	6

#	Article	IF	CITATIONS
37	Effects of Room Ionic Liquid as Solute on the Electrolyte Solution Structure and Electrochemical Performances in Ethylene Carbonate-Based Electrolyte. Journal of the Electrochemical Society, 2018, 165, A3844-A3853.	2.9	4
38	Partially Fluorinated Ether as an Electrolyte Additive to Modify Electrode Surface and Suppress Dissolution of Polysulfides in Li-S Batteries. Electrochemical Energy Technology, 2018, 4, 39-46.	1.2	8
39	Strongly Surfaceâ€Bonded MoO ₂ @Carbon Nanocomposites by Nitrogenâ€Doping with Outstanding Capability for Fast and Stable Li Storage. ChemNanoMat, 2018, 4, 1247-1253.	2.8	21
40	Effectively stabilizing 5â€V spinel LiNi0.5Mn1.5O4 cathode in organic electrolyte by polyvinylidene fluoride coating. Applied Surface Science, 2018, 455, 349-356.	6.1	24
41	Oneâ€pot Syntheses of Spinel <scp>AB₂O₄</scp> (A = Ni or Co, B = Microspheres with Different Hollow Interiors for Supercapacitors Application. Chinese Journal of Chemistry, 2017, 35, 67-72.	Mn or Fe) 4.9) 25
42	Hairy graphite of high electrochemical performances prepared through in-situ decoration of carbon nanotubes. Electrochimica Acta, 2017, 233, 229-236.	5.2	4
43	Constructing an elastic solid electrolyte interphase on graphite: a novel strategy suppressing lithium inventory loss in lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 10885-10894.	10.3	44
44	Aluminum fumarate-based metal organic frameworks with tremella-like structure as ultrafast and stable anode for lithium-ion batteries. Nano Energy, 2017, 39, 200-210.	16.0	96
45	Quantitative Characterization of the Surface Evolution for LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ /Graphite Cell during Long-Term Cycling. ACS Applied Materials & Interfaces, 2017, 9, 12445-12452.	8.0	55
46	Ultrahigh-Capacity Organic Anode with High-Rate Capability and Long Cycle Life for Lithium-Ion Batteries. ACS Energy Letters, 2017, 2, 2140-2148.	17.4	124
47	An organic-skinned secondary coating for carbon-coated LiFePO4 cathode of high electrochemical performances. Electrochimica Acta, 2017, 258, 1244-1253.	5.2	22
48	Green fabrication of sandwich-like and dodecahedral C@Fe3O4@C as high-performance anode for lithium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2593-2600.	2.5	5
49	Improved Li-ion diffusion and stability of a LiNi _{0.5} Mn _{1.5} O ₄ cathode through in situ co-doping with dual-metal cations and incorporation of a superionic conductor. Journal of Materials Chemistry A, 2017, 5, 145-154.	10.3	73
50	Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries. Carbon, 2017, 111, 291-298.	10.3	57
51	Synergistic Ternary Composite (Carbon/Fe ₃ O ₄ @Graphene) with Hollow Microspherical and Robust Structure for Liâ€ion Storage. Chemistry - A European Journal, 2016, 22, 376-381.	3.3	23
52	Ultrafast Li-storage of MoS 2 nanosheets grown on metal-organic framework-derived microporous nitrogen-doped carbon dodecahedrons. Journal of Power Sources, 2016, 324, 1-7.	7.8	53
53	3D Interconnected and Multiwalled Carbon@MoS ₂ @Carbon Hollow Nanocables as Outstanding Anodes for Na-Ion Batteries. Small, 2016, 12, 6033-6041.	10.0	120
54	A self-supported carbon nanofiber paper/sulfur anode with high-capacity and high-power for application in Li-ion batteries. Carbon, 2016, 110, 249-256.	10.3	13

#	Article	IF	CITATIONS
55	N-Methylacetamide as an electrolyte component for suppressing co-intercalation of propylene carbonate in lithium ion batteries. RSC Advances, 2016, 6, 65847-65853.	3.6	8
56	Robust 3D nanowebs assembled from interconnected and sandwich-like C@Fe ₃ O ₄ @C coaxial nanocables for enhanced Li-ion storage. Journal of Materials Chemistry A, 2016, 4, 10314-10320.	10.3	33
57	Tailoring the Interplay between Ternary Composite Binder and Graphite Anodes toward High-Rate and Long-Life Li-Ion Batteries. Electrochimica Acta, 2016, 191, 70-80.	5.2	25
58	Layer-by-Layer Polyelectrolyte Assisted Growth of 2D Ultrathin MoS2 Nanosheets on Various 1D Carbons for Superior Li-Storage. ACS Applied Materials & Interfaces, 2016, 8, 1398-1405.	8.0	54
59	Strong Surfaceâ€Bound Sulfur in Conductive MoO ₂ Matrix for Enhancing Li–S Battery Performance. Advanced Materials Interfaces, 2015, 2, 1500048.	3.7	151
60	Controllable synthesis of spinel lithium nickel manganese oxide cathode material with enhanced electrochemical performances through a modified oxalate co-precipitation method. Journal of Power Sources, 2015, 274, 1180-1187.	7.8	40
61	Strongly coupled 1D sandwich-like C@Fe ₃ O ₄ @C coaxial nanotubes with ultrastable and high capacity for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 18289-18295.	10.3	68
62	Correlation between lithium deposition on graphite electrode and the capacity loss for LiFePO 4 /graphite cells. Electrochimica Acta, 2015, 173, 323-330.	5.2	43
63	ls overprotection of the sulfur cathode good for Li–S batteries?. Chemical Communications, 2015, 51, 12459-12462.	4.1	4
64	Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries. Carbon, 2015, 92, 119-125.	10.3	89
65	Enhancing electrochemical properties of graphite anode by using poly(methylmethacrylate)–poly(vinylidene fluoride) composite binder. Carbon, 2015, 92, 318-326.	10.3	43
66	A Binary Cyclic Carbonates-Based Electrolyte Containing Propylene Carbonate and Trifluoropropylene Carbonate for 5V Lithium-Ion Batteries. Electrochimica Acta, 2015, 167, 151-159.	5.2	43
67	From Dispersed Microspheres to Interconnected Nanospheres: Carbon-Sandwiched Monolayered MoS ₂ as High-Performance Anode of Li-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 22927-22934.	8.0	69
68	In-situ electrochemical coating of Ag nanoparticles onto graphite electrode with enhanced performance for Li-ion batteries. Electrochimica Acta, 2015, 155, 396-401.	5.2	13
69	MOF-derived microporous carbon as a better choice for Na-ion batteries than mesoporous CMK-3. RSC Advances, 2014, 4, 64692-64697.	3.6	55
70	Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 711-719.	10.3	59
71	Metal organic frameworks-derived Co ₃ O ₄ hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. Journal of Materials Chemistry A, 2014, 2, 12194-12200.	10.3	353
72	Core–Shell Structure of Hierarchical Quasiâ€Hollow MoS ₂ Microspheres Encapsulated Porous Carbon as Stable Anode for Liâ€Ion Batteries. Small, 2014, 10, 4975-4981.	10.0	181

#	Article	IF	CITATIONS
73	A safe and superior propylene carbonate-based electrolyte with high-concentration Li salt. Pure and Applied Chemistry, 2014, 86, 585-591.	1.9	13
74	Construction of symmetric aqueous rechargeable battery with high voltage based on NiFe2O4 hollow microspheres. Electrochemistry Communications, 2014, 40, 9-12.	4.7	23
75	Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochimica Acta, 2013, 105, 378-383.	5.2	121
76	Low-Cost Synthesis of Hierarchical V ₂ O ₅ Microspheres as High-Performance Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 7671-7675.	8.0	86
77	Capacity loss induced by lithium deposition at graphite anode for LiFePO4/graphite cell cycling at different temperatures. Electrochimica Acta, 2013, 111, 802-808.	5.2	78
78	A monodispersed nano-hexahedral LiFePO4 with improved power capability by carbon-coatings. Journal of Alloys and Compounds, 2013, 579, 377-383.	5.5	53
79	Low crystallinity VOOH hollow microspheres as an outstanding high-rate and long-life cathode for sodium ion batteries. Journal of Materials Chemistry A, 2013, 1, 12404.	10.3	41
80	Ordered mesoporous MoO2 as a high-performance anode material for aqueous supercapacitors. Journal of Power Sources, 2013, 237, 80-83.	7.8	100
81	Study on different power and cycling performance of crystalline KxMnO2·nH2O asÂcathode material for supercapacitors in Li2SO4, Na2SO4, and K2SO4 aqueous electrolytes. Journal of Power Sources, 2013, 223, 56-61.	7.8	75
82	Core–shell sulfur@polypyrrole composites as high-capacity materials for aqueous rechargeable batteries. Nanoscale, 2013, 5, 1460.	5.6	86
83	An aqueous rechargeable lithium battery of high energy density based on coated Li metal and LiCoO2. Chemical Communications, 2013, 49, 6179.	4.1	85
84	One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors. Journal of Power Sources, 2012, 219, 253-257.	7.8	66
85	Hard carbon: a promising lithium-ion battery anode for high temperature applications with ionic electrolyte. RSC Advances, 2012, 2, 4904.	3.6	79
86	Core–Shell Structure of Polypyrrole Grown on V ₂ O ₅ Nanoribbon as High Performance Anode Material for Supercapacitors. Advanced Energy Materials, 2012, 2, 950-955.	19.5	469
87	Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy and Environmental Science, 2011, 4, 3985.	30.8	333
88	2D Sandwichâ€like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors. Advanced Materials, 2011, 23, 5574-5580.	21.0	526
89	A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O. Journal of Power Sources, 2010, 195, 2789-2794.	7.8	185
90	Electrochemical Performance of MnO ₂ Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors. Journal of Physical Chemistry C, 2009, 113, 14020-14027.	3.1	631

#	Article	IF	CITATIONS
91	An Aqueous Electrochemical Energy Storage System Based on Doping and Intercalation: Ppy//LiMn ₂ O ₄ . ChemPhysChem, 2008, 9, 2299-2301.	2.1	54